Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chemosphere ; 362: 142700, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936485

RESUMEN

Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 µM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.

2.
DNA Repair (Amst) ; 139: 103694, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788323

RESUMEN

Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.


Asunto(s)
Reparación del ADN , Mutagénesis , Humanos , Animales , Neoplasias/genética , Daño del ADN , Inestabilidad Genómica , Reparación de la Incompatibilidad de ADN
3.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645014

RESUMEN

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

4.
Nucleic Acids Res ; 51(20): 11040-11055, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37791890

RESUMEN

DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Mutagénesis , Oxígeno , Humanos , Disparidad de Par Base , Reparación del ADN , Replicación del ADN , Mutación , Línea Celular
5.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686184

RESUMEN

Resistance to anticancer agents is a major obstacle to efficacious tumour therapy and responsible for high cancer-related mortality rates. Some resistance mechanisms are associated with pharmacokinetic variability in anticancer drug exposure due to genetic polymorphisms of drug-metabolizing cytochrome P450 (CYP) enzymes, whereas variations in tumoural metabolism as a consequence of CYP copy number alterations are assumed to contribute to the selection of resistant cells. A high-throughput quantitative polymerase chain reaction (qPCR)-based method was developed for detection of CYP copy number alterations in tumours, and a scoring system improved the identification of inappropriate reference genes that underwent deletion/multiplication in tumours. The copy numbers of both the target (CYP2C8, CYP3A4) and the reference genes (ALB, B2M, BCKDHA, F5, CD36, MPO, TBP, RPPH1) established in primary lung adenocarcinoma by the qPCR-based method were congruent with those determined by next-generation sequencing (for 10 genes, slope = 0.9498, r2 = 0.72). In treatment naïve adenocarcinoma samples, the copy number multiplication of paclitaxel-metabolizing CYP2C8 and/or CYP3A4 was more prevalent in non-responder patients with progressive disease/exit than in responders with complete remission. The high-throughput qPCR-based method can become an alternative approach to next-generation sequencing in routine clinical practice, and identification of altered CYP copy numbers may provide a promising biomarker for therapy-resistant tumours.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Sistema Enzimático del Citocromo P-450 , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/genética , Variaciones en el Número de Copia de ADN , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Resistencia a Antineoplásicos/genética
6.
Science ; 376(6591): 351-352, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35446665

RESUMEN

Analysis of cancer genome sequences reveals new mutational signatures.


Asunto(s)
Neoplasias , Genoma Humano , Humanos , Mutación , Neoplasias/genética
7.
Cell Rep ; 38(12): 110555, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320711

RESUMEN

Mutational signatures defined by single base substitution (SBS) patterns in cancer have elucidated potential mutagenic processes that contribute to malignancy. Two prevalent mutational patterns in human cancers are attributed to the APOBEC3 cytidine deaminase enzymes. Among the seven human APOBEC3 proteins, APOBEC3A is a potent deaminase and proposed driver of cancer mutagenesis. In this study, we prospectively examine genome-wide aberrations by expressing human APOBEC3A in avian DT40 cells. From whole-genome sequencing, we detect hundreds to thousands of base substitutions per genome. The APOBEC3A signature includes widespread cytidine mutations and a unique insertion-deletion (indel) signature consisting largely of cytidine deletions. This multi-dimensional APOBEC3A signature is prevalent in human cancer genomes. Our data further reveal replication-associated mutations, the rate of stem-loop and clustered mutations, and deamination of methylated cytidines. This comprehensive signature of APOBEC3A mutagenesis is a tool for future studies and a potential biomarker for APOBEC3 activity in cancer.


Asunto(s)
Neoplasias , Citidina , Citidina Desaminasa , Genoma Humano , Humanos , Mutagénesis , Neoplasias/genética , Proteínas
8.
PLoS Genet ; 18(2): e1010051, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130276

RESUMEN

Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10-20% of non-paired substitutions as well, underscoring the importance of the process.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , ADN/genética , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación , Antígeno Nuclear de Célula en Proliferación/genética
9.
Nat Commun ; 13(1): 226, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017534

RESUMEN

Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency-specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Conversión Génica , Mutación Missense , Proteína BRCA2/metabolismo , Aductos de ADN , Daño del ADN , Reparación del ADN , Humanos , Mutagénesis , Proteína 1 de Unión al Supresor Tumoral P53
10.
EMBO J ; 40(22): e108225, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34605051

RESUMEN

Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.


Asunto(s)
Epistasis Genética , Microtúbulos/metabolismo , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Adaptación Biológica/genética , Aneuploidia , Cromosomas Fúngicos , Regulación Fúngica de la Expresión Génica , Microtúbulos/genética , Polimerizacion , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuenciación Completa del Genoma
11.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607954

RESUMEN

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Asunto(s)
Proteína BRCA1/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Pérdida de Heterocigocidad/genética , Proteína p53 Supresora de Tumor/genética , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Modelos Animales de Enfermedad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/inducido químicamente , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Pérdida de Heterocigocidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
NPJ Precis Oncol ; 5(1): 55, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145376

RESUMEN

PARP inhibitors are approved for the treatment of solid tumor types that frequently harbor alterations in the key homologous recombination (HR) genes, BRCA1/2. Other tumor types, such as lung cancer, may also be HR deficient, but the frequency of such cases is less well characterized. Specific DNA aberration profiles (mutational signatures) are induced by homologous recombination deficiency (HRD) and their presence can be used to assess the presence or absence of HR deficiency in a given tumor biopsy even in the absence of an observed alteration of an HR gene. We derived various HRD-associated mutational signatures from whole-genome and whole-exome sequencing data in the lung adenocarcinoma and lung squamous carcinoma cases from TCGA, and in a patient of ours with stage IVA lung cancer with exceptionally good response to platinum-based therapy, and in lung cancer cell lines. We found that a subset of the investigated cases, both with and without biallelic loss of BRCA1 or BRCA2, showed robust signs of HR deficiency. The extreme platinum responder case also showed a robust HRD-associated genomic mutational profile. HRD-associated mutational signatures were also associated with PARP inhibitor sensitivity in lung cancer cell lines. Consequently, lung cancer cases with HRD, as identified by diagnostic mutational signatures, may benefit from PARP inhibitor therapy.

13.
Mutagenesis ; 36(1): 75-86, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33502495

RESUMEN

Platinum-based drugs are a mainstay of cancer chemotherapy. However, their mutagenic effect can increase tumour heterogeneity, contribute to the evolution of treatment resistance and also induce secondary malignancies. We coupled whole genome sequencing with phenotypic investigations on two cell line models to compare the magnitude and examine the mechanism of mutagenicity of cisplatin, carboplatin and oxaliplatin. Cisplatin induced significantly more base substitution mutations than carboplatin or oxaliplatin when used at equitoxic concentrations on human TK6 or chicken DT40 cells, and also induced the highest number of short insertions and deletions. The analysis of base substitution spectra revealed that all three tested platinum drugs elicit both a direct mutagenic effect at purine dinucleotides, and an indirect effect of accelerating endogenous mutagenic processes, whereas the direct mutagenic effect appeared to correlate with the level of DNA damage caused as assessed through histone H2AX phosphorylation and single-cell agarose gel electrophoresis, the indirect mutagenic effects were equal. The different mutagenicity and DNA-damaging effect of equitoxic platinum drug treatments suggest that DNA damage independent mechanisms significantly contribute to their cytotoxicity. Thus, the comparatively high mutagenicity of cisplatin should be taken into account in the design of chemotherapeutic regimens.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Linfocitos/patología , Linfoma/patología , Mutágenos/efectos adversos , Animales , Carboplatino/farmacología , Células Cultivadas , Pollos , Cisplatino/farmacología , Humanos , Linfocitos/efectos de los fármacos , Linfoma/tratamiento farmacológico , Pruebas de Mutagenicidad , Oxaliplatino/farmacología
14.
FEBS Open Bio ; 11(4): 1054-1075, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512058

RESUMEN

DNA damage removal by nucleotide excision repair (NER) and replicative bypass via translesion synthesis (TLS) and template switch (TSw) are important in ensuring genome stability. In this study, we tested the applicability of an SV40 large T antigen-based replication system for the simultaneous examination of these damage tolerance processes. Using both Sanger and next-generation sequencing combined with lesion-specific qPCR and replication efficiency studies, we demonstrate that this system works well for studying NER and TLS, especially its one-polymerase branch, while it is less suited to investigations of homology-related repair processes, such as TSw. Cis-syn cyclobutane pyrimidine dimer photoproducts were replicated with equal efficiency to lesion-free plasmids in vitro, and the majority of TLS on this lesion could be inhibited by a peptide (PIR) specific for the polη-PCNA interaction interface. TLS on 6-4 pyrimidine-pyrimidone photoproduct proved to be inefficient and was slightly facilitated by PIR as well as by a recombinant ubiquitin-binding zinc finger domain of polη in HeLa extract, possibly by promoting polymerase exchange. Supplementation of the extract with recombinant PCNA variants indicated the dependence of TLS on PCNA ubiquitylation. In contrast to active TLS and NER, we found no evidence of successful TSw in cellular extracts. The established methods can promote in vitro investigations of replicative DNA damage bypass.


Asunto(s)
Antígenos Virales de Tumores/metabolismo , Daño del ADN , Replicación del ADN , Línea Celular , Células Cultivadas , Reparación del ADN , Orden Génico , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas In Vitro , Plásmidos/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Transfección , Rayos Ultravioleta
15.
Clin Cancer Res ; 27(7): 2011-2022, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208343

RESUMEN

PURPOSE: Cisplatin-based chemotherapy is a first-line treatment for muscle-invasive and metastatic urothelial cancer. Approximately 10% of bladder urothelial tumors have a somatic missense mutation in the nucleotide excision repair (NER) gene, ERCC2, which confers increased sensitivity to cisplatin-based chemotherapy. However, a significant subset of patients is ineligible to receive cisplatin-based therapy due to medical contraindications, and no NER-targeted approaches are available for platinum-ineligible or platinum-refractory ERCC2-mutant cases. EXPERIMENTAL DESIGN: We used a series of NER-proficient and NER-deficient preclinical tumor models to test sensitivity to irofulven, an abandoned anticancer agent. In addition, we used available clinical and sequencing data from multiple urothelial tumor cohorts to develop and validate a composite mutational signature of ERCC2 deficiency and cisplatin sensitivity. RESULTS: We identified a novel synthetic lethal relationship between tumor NER deficiency and sensitivity to irofulven. Irofulven specifically targets cells with inactivation of the transcription-coupled NER (TC-NER) pathway and leads to robust responses in vitro and in vivo, including in models with acquired cisplatin resistance, while having minimal effect on cells with intact NER. We also found that a composite mutational signature of ERCC2 deficiency was strongly associated with cisplatin response in patients and was also associated with cisplatin and irofulven sensitivity in preclinical models. CONCLUSIONS: Tumor NER deficiency confers sensitivity to irofulven, a previously abandoned anticancer agent, with minimal activity in NER-proficient cells. A composite mutational signature of NER deficiency may be useful in identifying patients likely to respond to NER-targeting agents, including cisplatin and irofulven.See related commentary by Jiang and Greenberg, p. 1833.


Asunto(s)
Antineoplásicos , Sesquiterpenos , Neoplasias de la Vejiga Urinaria , Antineoplásicos/farmacología , Cisplatino , Reparación del ADN/genética , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Proteína de la Xerodermia Pigmentosa del Grupo D
16.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32956035

RESUMEN

Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.


Asunto(s)
Antineoplásicos/farmacología , ADN , Genoma , Uracilo , ADN/análisis , ADN/biosíntesis , ADN/química , ADN/genética , Genoma/efectos de los fármacos , Genoma/genética , Genómica , Células HCT116 , Humanos , Microscopía , Análisis de Secuencia de ADN , Uracilo/análisis , Uracilo/biosíntesis , Uracilo/química
17.
Biochem Pharmacol ; 175: 113865, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142727

RESUMEN

Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Proteínas de Neoplasias/genética , Células A549 , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Plásmidos
18.
DNA Repair (Amst) ; 89: 102827, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32126497

RESUMEN

The analysis of tumour genome sequences has demonstrated high rates of base substitution mutagenesis upon the inactivation of DNA mismatch repair (MMR), and the resulting somatic mutations in MMR deficient tumours appear to significantly enhance the response to immune therapy. A handful of different algorithmically derived base substitution mutation signatures have been attributed to MMR deficiency in tumour somatic mutation datasets. In contrast, mutation data obtained from whole genome sequences of isogenic wild type and MMR deficient cell lines in this study, as well as from published sources, show a more uniform experimental mutation spectrum of MMR deficiency. In order to resolve this discrepancy, we reanalysed mutation data from MMR deficient tumour whole exome and whole genome sequences. We derived two base substitution signatures using non-negative matrix factorisation, which together adequately describe mutagenesis in all tumour and cell line samples. The two new signatures broadly resemble COSMIC signatures 6 and 20, but perform better than existing COSMIC signatures at identifying MMR deficient tumours in mutation signature deconstruction. We show that the contribution of the two identified signatures, one of which is dominated by C to T mutations at CpG sites, is biased by the different sequence composition of the exome and the whole genome. We further show that the identity of the inactivated MMR gene, the tissue type, the mutational burden or the patient's age does not influence the mutation spectrum, but that a tendency for a greater contribution by the CpG mutational process is observed in tumours as compared to cultured cells. Our analysis suggest that two separable mutational processes operate in the genomes of MMR deficient cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Análisis Mutacional de ADN , Proteína 2 Homóloga a MutS/genética , Mutagénesis , Neoplasias/genética , Línea Celular , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Humanos , Mutación , Neoplasias/metabolismo , Secuenciación del Exoma
19.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053991

RESUMEN

Breast cancer is the most commonly occurring cancer in women and the second most common cancer overall. By the age of 80, the estimated risk for breast cancer for women with germline BRCA1 or BRCA2 mutations is around 80%. Genetically engineered BRCA1-deficient mouse models offer a unique opportunity to study the pathogenesis and therapy of triple negative breast cancer. Here we present a newly established Brca1-/-, p53-/- mouse mammary tumor cell line, designated as CST. CST shows prominent features of BRCA1-mutated triple-negative breast cancers including increased motility, high proliferation rate, genome instability and sensitivity to platinum chemotherapy and PARP inhibitors (olaparib, veliparib, rucaparib and talazoparib). Genomic instability of CST cells was confirmed by whole genome sequencing, which also revealed the presence of COSMIC (Catalogue of Somatic Mutations in Cancer) mutation signatures 3 and 8 associated with homologous recombination (HR) deficiency. In vitro sensitivity of CST cells was tested against 11 chemotherapy agents. Tumors derived from orthotopically injected CST-mCherry cells in FVB-GFP mice showed sensitivity to cisplatin, providing a new model to study the cooperation of BRCA1-KO, mCherry-positive tumor cells and the GFP-expressing stromal compartment in therapy resistance and metastasis formation. In summary, we have established CST cells as a new model recapitulating major characteristics of BRCA1-negative breast cancers.


Asunto(s)
Proteína BRCA1/genética , Neoplasias Mamarias Animales/genética , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Eliminación de Gen , Inestabilidad Genómica , Neoplasias Mamarias Animales/patología , Ratones , Neoplasias de la Mama Triple Negativas/patología
20.
Genome Biol ; 20(1): 240, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727117

RESUMEN

BACKGROUND: Homologous recombination (HR) repair deficiency arising from defects in BRCA1 or BRCA2 is associated with characteristic patterns of somatic mutations. In this genetic study, we ask whether inactivating mutations in further genes of the HR pathway or the DNA damage checkpoint also give rise to somatic mutation patterns that can be used for treatment prediction. RESULTS: Using whole genome sequencing of an isogenic knockout cell line panel, we find a universal HR deficiency-specific base substitution signature that is similar to COSMIC signature 3. In contrast, we detect different deletion phenotypes corresponding to specific HR mutants. The inactivation of BRCA2 or PALB2 leads to larger deletions, typically with microhomology, when compared to the disruption of BRCA1, RAD51 paralogs, or RAD54. Comparison with the deletion spectrum of Cas9 cut sites suggests that most spontaneously arising genomic deletions are not the consequence of double-strand breaks. Surprisingly, the inactivation of checkpoint kinases ATM and CHK2 has no mutagenic consequences. Analysis of tumor exomes with biallelic inactivating mutations in the investigated genes confirms the validity of the cell line models. We present a comprehensive analysis of sensitivity of the investigated mutants to 13 therapeutic agents for the purpose of correlating genomic mutagenic phenotypes with drug sensitivity. CONCLUSION: Our results suggest that no single genomic mutational class shows perfect correlation with sensitivity to common treatments, but the contribution of COSMIC signature 3 to base substitutions, or a combined measure of different features, may be reasonably good at predicting platinum and PARP inhibitor sensitivity.


Asunto(s)
Genes cdc , Mutagénesis , Variantes Farmacogenómicas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Reparación del ADN por Recombinación/genética , Animales , Línea Celular , Pollos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA