Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
medRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38293154

RESUMEN

Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, potentially averting deadly outcomes. Here, we describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, pre-malignant and malignant forms of NF1 PNST. Using plasma samples from a novel cohort of 101 NF1 patients and 21 healthy controls, we validated that our previous cfDNA copy number alteration (CNA)-based approach identifies malignant peripheral nerve sheath tumor (MPNST) but cannot distinguish among benign and premalignant states. We therefore investigated the ability of fragment-based cfDNA features to differentiate NF1-associated tumors including binned genome-wide fragment length ratios, end motif analysis, and non-negative matrix factorization deconvolution of fragment lengths. Fragmentomic methods were able to differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. Overall, this study pioneers the early detection of malignant and premalignant peripheral nerve sheath tumors in NF1 patients using plasma cfDNA fragmentomics. In addition to screening applications, this novel approach distinguishes atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve sheath tumors, enabling more precise clinical diagnosis and management.

2.
Clin Cancer Res ; 30(7): 1409-1421, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939112

RESUMEN

PURPOSE: Our goal was to demonstrate that lymphatic drainage fluid (lymph) has improved sensitivity in quantifying postoperative minimal residual disease (MRD) in locally advanced human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) compared with plasma, and leverage this novel biofluid for patient risk stratification. EXPERIMENTAL DESIGN: We prospectively collected lymph samples from neck drains of 106 patients with HPV (+) OPSCC, along with 67 matched plasma samples, 24 hours after surgery. PCR and next-generation sequencing were used to quantify cancer-associated cell-free HPV (cf-HPV) and tumor-informed variants in lymph and plasma. Next, lymph cf-HPV and variants were compared with TNM stage, extranodal extension (ENE), and composite definitions of high-risk pathology. We then created a machine learning model, informed by lymph MRD and clinicopathologic features, to compare with progression-free survival (PFS). RESULTS: Postoperative lymph was enriched with cf-HPV compared with plasma (P < 0.0001) and correlated with pN2 stage (P = 0.003), ENE (P < 0.0001), and trial-defined pathologic risk criteria (mean AUC = 0.78). In addition, the lymph mutation number and variant allele frequency were higher in pN2 ENE (+) necks than in pN1 ENE (+) (P = 0.03, P = 0.02) or pN0-N1 ENE (-) (P = 0.04, P = 0.03, respectively). The lymph MRD-informed risk model demonstrated inferior PFS in high-risk patients (AUC = 0.96, P < 0.0001). CONCLUSIONS: Variant and cf-HPV quantification, performed in 24-hour postoperative lymph samples, reflects single- and multifeature high-risk pathologic criteria. Incorporating lymphatic MRD and clinicopathologic feature analysis can stratify PFS early after surgery in patients with HPV (+) head and neck cancer. See related commentary by Shannon and Iyer, p. 1223.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/cirugía , Neoplasia Residual/patología , Pronóstico , Estadificación de Neoplasias , Neoplasias Orofaríngeas/diagnóstico , Neoplasias Orofaríngeas/cirugía , Neoplasias Orofaríngeas/patología , Neoplasias de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Estudios Retrospectivos
3.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37349125

RESUMEN

Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.


Asunto(s)
ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Genómica
4.
Cancer Discov ; 13(3): 654-671, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598417

RESUMEN

Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis. SIGNIFICANCE: MPNST is the most common cause of death and morbidity for individuals with NF1, a relatively common tumor predisposition syndrome. Our results suggest that somatic copy-number and methylation profiling of tumor or cfDNA could serve as a biomarker for early diagnosis and to stratify patients into prognostic and treatment-related subgroups. This article is highlighted in the In This Issue feature, p. 517.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Neurofibrosarcoma , Humanos , Neurofibrosarcoma/genética , Neurofibrosarcoma/diagnóstico , Neurofibrosarcoma/patología , Histonas/metabolismo , Metilación de ADN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neurofibromatosis 1/genética , Genómica , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo
6.
Nat Commun ; 12(1): 5558, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561429

RESUMEN

Cardiac radiotherapy (RT) may be effective in treating heart failure (HF) patients with refractory ventricular tachycardia (VT). The previously proposed mechanism of radiation-induced fibrosis does not explain the rapidity and magnitude with which VT reduction occurs clinically. Here, we demonstrate in hearts from RT patients that radiation does not achieve transmural fibrosis within the timeframe of VT reduction. Electrophysiologic assessment of irradiated murine hearts reveals a persistent supraphysiologic electrical phenotype, mediated by increases in NaV1.5 and Cx43. By sequencing and transgenic approaches, we identify Notch signaling as a mechanistic contributor to NaV1.5 upregulation after RT. Clinically, RT was associated with increased NaV1.5 expression in 1 of 1 explanted heart. On electrocardiogram (ECG), post-RT QRS durations were shortened in 13 of 19 patients and lengthened in 5 patients. Collectively, this study provides evidence for radiation-induced reprogramming of cardiac conduction as a potential treatment strategy for arrhythmia management in VT patients.


Asunto(s)
Conexina 43/genética , Sistema de Conducción Cardíaco/efectos de la radiación , Corazón/efectos de la radiación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Taquicardia Ventricular/radioterapia , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Conexina 43/metabolismo , Relación Dosis-Respuesta en la Radiación , Electrocardiografía , Fibrosis Endomiocárdica , Femenino , Regulación de la Expresión Génica , Corazón/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/fisiología , Frecuencia Cardíaca/efectos de la radiación , Humanos , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Transducción de Señal , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
7.
PLoS Med ; 18(8): e1003734, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34464388

RESUMEN

BACKGROUND: The leading cause of mortality for patients with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is the development of malignant peripheral nerve sheath tumor (MPNST), an aggressive soft tissue sarcoma. In the setting of NF1, this cancer type frequently arises from within its common and benign precursor, plexiform neurofibroma (PN). Transformation from PN to MPNST is challenging to diagnose due to difficulties in distinguishing cross-sectional imaging results and intralesional heterogeneity resulting in biopsy sampling errors. METHODS AND FINDINGS: This multi-institutional study from the National Cancer Institute and Washington University in St. Louis used fragment size analysis and ultra-low-pass whole genome sequencing (ULP-WGS) of plasma cell-free DNA (cfDNA) to distinguish between MPNST and PN in patients with NF1. Following in silico enrichment for short cfDNA fragments and copy number analysis to estimate the fraction of plasma cfDNA originating from tumor (tumor fraction), we developed a noninvasive classifier that differentiates MPNST from PN with 86% pretreatment accuracy (91% specificity, 75% sensitivity) and 89% accuracy on serial analysis (91% specificity, 83% sensitivity). Healthy controls without NF1 (participants = 16, plasma samples = 16), PN (participants = 23, plasma samples = 23), and MPNST (participants = 14, plasma samples = 46) cohorts showed significant differences in tumor fraction in plasma (P = 0.001) as well as cfDNA fragment length (P < 0.001) with MPNST samples harboring shorter fragments and being enriched for tumor-derived cfDNA relative to PN and healthy controls. No other covariates were significant on multivariate logistic regression. Mutational analysis demonstrated focal NF1 copy number loss in PN and MPNST patient plasma but not in healthy controls. Greater genomic instability including alterations associated with malignant transformation (focal copy number gains in chromosome arms 1q, 7p, 8q, 9q, and 17q; focal copy number losses in SUZ12, SMARCA2, CDKN2A/B, and chromosome arms 6p and 9p) was more prominently observed in MPNST plasma. Furthermore, the sum of longest tumor diameters (SLD) visualized by cross-sectional imaging correlated significantly with paired tumor fractions in plasma from MPNST patients (r = 0.39, P = 0.024). On serial analysis, tumor fraction levels in plasma dynamically correlated with treatment response to therapy and minimal residual disease (MRD) detection before relapse. Study limitations include a modest MPNST sample size despite accrual from 2 major referral centers for this rare malignancy, and lack of uniform treatment and imaging protocols representing a real-world cohort. CONCLUSIONS: Tumor fraction levels derived from cfDNA fragment size and copy number alteration analysis of plasma cfDNA using ULP-WGS significantly correlated with MPNST tumor burden, accurately distinguished MPNST from its benign PN precursor, and dynamically correlated with treatment response. In the future, our findings could form the basis for improved early cancer detection and monitoring in high-risk cancer-predisposed populations.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Neurofibroma Plexiforme/diagnóstico , Neurofibrosarcoma/diagnóstico , Secuenciación Completa del Genoma , Adulto , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
PLoS Med ; 18(8): e1003732, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34464379

RESUMEN

BACKGROUND: The standard of care treatment for muscle-invasive bladder cancer (MIBC) is radical cystectomy, which is typically preceded by neoadjuvant chemotherapy. However, the inability to assess minimal residual disease (MRD) noninvasively limits our ability to offer bladder-sparing treatment. Here, we sought to develop a liquid biopsy solution via urine tumor DNA (utDNA) analysis. METHODS AND FINDINGS: We applied urine Cancer Personalized Profiling by Deep Sequencing (uCAPP-Seq), a targeted next-generation sequencing (NGS) method for detecting utDNA, to urine cell-free DNA (cfDNA) samples acquired between April 2019 and November 2020 on the day of curative-intent radical cystectomy from 42 patients with localized bladder cancer. The average age of patients was 69 years (range: 50 to 86), of whom 76% (32/42) were male, 64% (27/42) were smokers, and 76% (32/42) had a confirmed diagnosis of MIBC. Among MIBC patients, 59% (19/32) received neoadjuvant chemotherapy. utDNA variant calling was performed noninvasively without prior sequencing of tumor tissue. The overall utDNA level for each patient was represented by the non-silent mutation with the highest variant allele fraction after removing germline variants. Urine was similarly analyzed from 15 healthy adults. utDNA analysis revealed a median utDNA level of 0% in healthy adults and 2.4% in bladder cancer patients. When patients were classified as those who had residual disease detected in their surgical sample (n = 16) compared to those who achieved a pathologic complete response (pCR; n = 26), median utDNA levels were 4.3% vs. 0%, respectively (p = 0.002). Using an optimal utDNA threshold to define MRD detection, positive utDNA MRD detection was highly correlated with the absence of pCR (p < 0.001) with a sensitivity of 81% and specificity of 81%. Leave-one-out cross-validation applied to the prediction of pathologic response based on utDNA MRD detection in our cohort yielded a highly significant accuracy of 81% (p = 0.007). Moreover, utDNA MRD-positive patients exhibited significantly worse progression-free survival (PFS; HR = 7.4; 95% CI: 1.4-38.9; p = 0.02) compared to utDNA MRD-negative patients. Concordance between urine- and tumor-derived mutations, determined in 5 MIBC patients, was 85%. Tumor mutational burden (TMB) in utDNA MRD-positive patients was inferred from the number of non-silent mutations detected in urine cfDNA by applying a linear relationship derived from The Cancer Genome Atlas (TCGA) whole exome sequencing of 409 MIBC tumors. We suggest that about 58% of these patients with high inferred TMB might have been candidates for treatment with early immune checkpoint blockade. Study limitations included an analysis restricted only to single-nucleotide variants (SNVs), survival differences diminished by surgery, and a low number of DNA damage response (DRR) mutations detected after neoadjuvant chemotherapy at the MRD time point. CONCLUSIONS: utDNA MRD detection prior to curative-intent radical cystectomy for bladder cancer correlated significantly with pathologic response, which may help select patients for bladder-sparing treatment. utDNA MRD detection also correlated significantly with PFS. Furthermore, utDNA can be used to noninvasively infer TMB, which could facilitate personalized immunotherapy for bladder cancer in the future.


Asunto(s)
Biomarcadores de Tumor/análisis , Cistectomía/estadística & datos numéricos , ADN de Neoplasias/análisis , Neoplasia Residual/diagnóstico , Neoplasias de la Vejiga Urinaria/diagnóstico , Orina/química , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Missouri , Invasividad Neoplásica/patología , Neoplasia Residual/etiología , Supervivencia sin Progresión , Neoplasias de la Vejiga Urinaria/etiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-34250420

RESUMEN

We hypothesized that circulating tumor DNA (ctDNA) molecular residual disease (MRD) analysis without prior mutational knowledge could be performed after neoadjuvant chemotherapy to assess oligometastatic colorectal cancer (CRC) treated surgically with curative intent. We also investigated urine as an alternative analyte for ctDNA MRD detection in this nongenitourinary setting. PATIENTS AND METHODS: We applied AVENIO targeted next-generation sequencing to plasma, tumor, and urine samples acquired on the day of curative-intent surgery from 24 prospectively enrolled patients with oligometastatic CRC. Age-related clonal hematopoiesis was accounted for by removing variants also present in white blood cells. Plasma and urine ctDNA MRD were correlated with tumor cells detected in the surgical specimen, and adjuvant treatment strategies were proposed based on ctDNA-inferred tumor mutational burden (iTMB) and targetable alterations. RESULTS: Seventy-one percent of patients were treated with neoadjuvant chemotherapy. Tumor-naive plasma ctDNA analysis detected MRD at a median level of 0.62% with 95% sensitivity and 100% specificity, and 94% and 77% sensitivity when only considering patients treated with neoadjuvant chemotherapy and putative driver mutations, respectively. In urine, ctDNA MRD detection specificity remained high at 100%, but sensitivity decreased to 64% with median levels being 11-fold lower than in plasma (P < .0001). Personalized ctDNA MRD oncogenomic analysis revealed 81% of patients might have been candidates for adjuvant immunotherapy based on high iTMB or targeted therapy based on actionable PIK3CA mutations. CONCLUSION: Tumor-naive plasma ctDNA analysis can sensitively and specifically detect MRD in patients with oligometastatic CRC after neoadjuvant chemotherapy. Urine-based ctDNA MRD detection is also feasible; however, it is less sensitive than plasma because of significantly lower levels. Oligometastatic patients with detectable MRD may benefit from additional personalized treatment based on ctDNA-derived oncogenomic profiling.


Asunto(s)
ADN Tumoral Circulante/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/orina , Neoplasia Residual/sangre , Neoplasia Residual/genética , Neoplasias Colorrectales/tratamiento farmacológico , Correlación de Datos , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Metástasis de la Neoplasia
11.
Thorac Surg Clin ; 30(2): 165-177, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32327175

RESUMEN

Liquid biopsies for the diagnosis and treatment of lung cancer have developed rapidly, driven primarily by technical advances in sensitivity to detect circulating tumor DNA (ctDNA). Still, technical limitations such as the challenge of detecting low-level ctDNA variants and distinguishing tumor-related variants from clonal hematopoiesis remain. With further technical advancements, new applications for ctDNA analysis are emerging including detection of post-treatment molecular residual disease (MRD), clinical trial selection, and early cancer detection. This chapter reviews the current state of ctDNA testing in NSCLC, the underlying technological advances enabling ctDNA detection, and the potential to expand ctDNA analysis to new applications.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante/análisis , Detección Precoz del Cáncer , Biopsia Líquida/métodos , Neoplasias Pulmonares , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/tendencias , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
12.
Clin Chim Acta ; 453: 190-3, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26706788

RESUMEN

BACKGROUND: Malignancy-associated hypercalcemia (MAHC) is the most common cause of hypercalcemia among hospitalized patients. MAHC can result from the production of parathyroid hormone related peptide (PTHrP) which is known as humoral hypercalcemia of malignancy (HHM). HHM is commonly thought to account for approximately 80% of MAHC. METHODS: We conducted a 12-year review of PTHrP testing at our institution to establish the prevalence of HHM among patients with MAHC. RESULTS: A total of 524 PTHrP immunoassays were performed during the study period of which 470 tests qualified for inclusion in the analysis. Evidence of malignancy was found for 242 of 470 patients (51%). No etiology could be determined for 98 cases of MAHC (40%) and increased PTHrP contributed to 92 cases (38%) of MAHC. Age, race and gender were not associated with HHM. Increased PTHrP was observed at initial malignancy diagnosis in 20% of cases. PTHrP was never increased outside of the context of malignancy. DISCUSSION: The prevalence of HHM among patients with MAHC is likely to be lower than previously described.


Asunto(s)
Hipercalcemia/complicaciones , Hipercalcemia/epidemiología , Neoplasias/complicaciones , Síndromes Paraneoplásicos/complicaciones , Síndromes Paraneoplásicos/epidemiología , Femenino , Humanos , Hipercalcemia/metabolismo , Incidencia , Masculino , Persona de Mediana Edad , Síndromes Paraneoplásicos/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo
13.
Transl Stroke Res ; 4(6): 589-603, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24323414

RESUMEN

Prolonged translation arrest in post-ischemic hippocampal CA1 pyramidal neurons precludes translation of induced stress genes and directly correlates with cell death. We evaluated the regulation of mRNAs containing adenine- and uridine-rich elements (ARE) by assessing HuR protein and hsp70 mRNA nuclear translocation, HuR polysome binding, and translation state analysis of CA1 and CA3 at 8 h of reperfusion after 10 min of global cerebral ischemia. There was no difference between CA1 and CA3 at 8 h of reperfusion in nuclear or cytoplasmic HuR protein or hsp70 mRNA, or HuR polysome association, suggesting that neither mechanism contributed to post-ischemic outcome. Translation state analysis revealed that 28 and 58 % of unique mRNAs significantly different between 8hR and NIC, in CA3 and CA1, respectively, were not polysome-bound. There was significantly greater diversity of polysome-bound mRNAs in reperfused CA3 compared to CA1, and in both regions, ARE-containing mRNAs accounted for 4-5 % of the total. These data indicate that posttranscriptional ARE-containing mRNA regulation occurs in reperfused neurons and contributes to post-ischemic outcome. Understanding the differential responses of vulnerable and resistant neurons to ischemia will contribute to the development of effective neuroprotective therapies.


Asunto(s)
Isquemia Encefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Daño por Reperfusión/metabolismo , Adenina/metabolismo , Animales , Western Blotting , Proteínas ELAV/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Ratas , Ratas Long-Evans , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA