Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol ; 194(3): 1397-1410, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37850879

RESUMEN

The acclimation of cyanobacteria to iron deficiency is crucial for their survival in natural environments. In response to iron deficiency, many cyanobacterial species induce the production of a pigment-protein complex called iron-stress-induced protein A (IsiA). IsiA proteins associate with photosystem I (PSI) and can function as light-harvesting antennas or dissipate excess energy. They may also serve as chlorophyll storage during iron limitation. In this study, we examined the functional role of IsiA in cells of Synechocystis sp. PCC 6803 grown under iron limitation conditions by measuring the cellular IsiA content and its capability to transfer energy to PSI. We specifically tested the effect of the oligomeric state of PSI by comparing wild-type (WT) Synechocystis sp. PCC 6803 with mutants lacking specific subunits of PSI, namely PsaL/PsaI (PSI subunits XI/VIII) and PsaF/PsaJ (PSI subunits III/IX). Time-resolved fluorescence spectroscopy revealed that IsiA formed functional PSI3-IsiA18 supercomplexes, wherein IsiA effectively transfers energy to PSI on a timescale of 10 ps at room temperature-measured in isolated complexes and in vivo-confirming the primary role of IsiA as an accessory light-harvesting antenna to PSI. However, a notable fraction (40%) remained unconnected to PSI, supporting the notion of a dual functional role of IsiA. Cells with monomeric PSI under iron deficiency contained, on average, only 3 to 4 IsiA complexes bound to PSI. These results show that IsiA can transfer energy to trimeric and monomeric PSI but to varying degrees and that the acclimatory production of IsiA under iron stress is controlled by its ability to perform its light-harvesting function.


Asunto(s)
Deficiencias de Hierro , Synechocystis , Humanos , Complejo de Proteína del Fotosistema I , Hierro , Synechocystis/genética , Aclimatación
2.
Lab Chip ; 22(16): 2986-2999, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35588270

RESUMEN

Symbiodiniaceae is an important dinoflagellate family which lives in endosymbiosis with reef invertebrates, including coral polyps, making them central to the holobiont. With coral reefs currently under extreme threat from climate change, there is a pressing need to improve our understanding on the stress tolerance and stress avoidance mechanisms of Symbiodinium spp. Reactive oxygen species (ROS) such as singlet oxygen are central players in mediating various stress responses; however, the detection of ROS using specific dyes is still far from definitive in intact Symbiodinium cells due to the hindrance of uptake of certain fluorescent dyes because of the presence of the cell wall. Protoplast technology provides a promising platform for studying oxidative stress with the main advantage of removed cell wall, however the preparation of viable protoplasts remains a significant challenge. Previous studies have successfully applied cellulose-based protoplast preparation in Symbiodiniaceae; however, the protoplast formation and regeneration process was found to be suboptimal. Here, we present a microfluidics-based platform which allowed protoplast isolation from individually trapped Symbiodinium cells, by using a precisely adjusted flow of cell wall digestion enzymes (cellulase and macerozyme). Trapped single cells exhibited characteristic changes in their morphology, cessation of cell division and a slight decrease in photosynthetic activity during protoplast formation. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Elevated flow rates in the microfluidic chambers resulted in somewhat faster protoplast formation; however, cell wall digestion at higher flow rates partially compromised photosynthetic activity. Physiologically competent protoplasts prepared from trapped cells in microfluidic chambers allowed for the first time the visualization of the intracellular localization of singlet oxygen (using Singlet Oxygen Sensor Green dye) in Symbiodiniaceae, potentially opening new avenues for studying oxidative stress.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Dinoflagelados/fisiología , Microfluídica , Protoplastos , Especies Reactivas de Oxígeno , Oxígeno Singlete
3.
Bioresour Technol ; 333: 125217, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33951580

RESUMEN

Photobiological hydrogen (H2) production is a promising renewable energy source. HydA hydrogenases of green algae are efficient but O2-sensitive and compete for electrons with CO2-fixation. Recently, we established a photoautotrophic H2 production system based on anaerobic induction, where the Calvin-Benson cycle is inactive and O2 scavenged by an absorbent. Here, we employed thin layer cultures, resulting in a three-fold increase in H2 production relative to bulk CC-124 cultures (50 µg chlorophyll/ml, 350 µmol photons m-2 s-1). Productivity was maintained when increasing the light intensity to 1000 µmol photons m-2s-1 and the cell density to 150 µg chlorophyll/ml. Remarkably, the L159I-N230Y photosystem II mutant and the pgrl1 photosystem I cyclic electron transport mutant produced 50% more H2 than CC-124, while the pgr5 mutant generated 250% more (1.2 ml H2/ml culture in six days). The photosynthetic apparatus of the pgr5 mutant and its in vitro HydA activity remained remarkably stable.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Hidrógeno/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Luz Solar
4.
Antioxid Redox Signal ; 29(15): 1516-1533, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28974112

RESUMEN

SIGNIFICANCE: Ascorbate (Asc) is an essential compound both in animals and plants, mostly due to its reducing properties, thereby playing a role in scavenging reactive oxygen species (ROS) and acting as a cofactor in various enzymatic reactions. Recent Advances: Growing number of evidence shows that excessive Asc accumulation may have negative effects on cellular functions both in humans and plants; inter alia it may negatively affect signaling mechanisms, cellular redox status, and contribute to the production of ROS via the Fenton reaction. CRITICAL ISSUES: Both plants and humans tightly control cellular Asc levels, possibly via biosynthesis, transport, and degradation, to maintain them in an optimum concentration range, which, among other factors, is essential to minimize the potentially harmful effects of Asc. On the contrary, the Fenton reaction induced by a high-dose Asc treatment in humans enables a potential cancer-selective cell death pathway. FUTURE DIRECTIONS: The elucidation of Asc induced cancer selective cell death mechanisms may give us a tool to apply Asc in cancer therapy. On the contrary, the regulatory mechanisms controlling cellular Asc levels are also to be considered, for example, when aiming at generating crops with elevated Asc levels.


Asunto(s)
Ácido Ascórbico/metabolismo , Plantas/metabolismo , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo
5.
Plant J ; 90(3): 478-490, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28161893

RESUMEN

Photosystem I (PSI) is the most efficient bioenergetic nanomachine in nature and one of the largest membrane protein complexes known. It is composed of 18 protein subunits that bind more than 200 co-factors and prosthetic groups. While the structure and function of PSI have been studied in great detail, very little is known about the PSI assembly process. In this work, we have characterized a PSI assembly intermediate in tobacco plants, which we named PSI*. We found PSI* to contain only a specific subset of the core subunits of PSI. PSI* is particularly abundant in young leaves where active thylakoid biogenesis takes place. Moreover, PSI* was found to overaccumulate in PsaF-deficient mutant plants, and we show that re-initiation of PsaF synthesis promotes the maturation of PSI* into PSI. The attachment of antenna proteins to PSI also requires the transition from PSI* to mature PSI. Our data could provide a biochemical entry point into the challenging investigation of PSI biogenesis and allow us to improve the model for the assembly pathway of PSI in thylakoid membranes of vascular plants.


Asunto(s)
Nicotiana/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/genética , Proteínas de Plantas/genética , Tilacoides/metabolismo , Nicotiana/genética
6.
J Exp Bot ; 66(9): 2373-400, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25540437

RESUMEN

During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/fisiología , Complejo de Citocromo b6f/fisiología , Fotosíntesis/fisiología , Aclimatación , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón , Ambiente , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo
7.
Plant Physiol ; 165(4): 1632-1646, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24963068

RESUMEN

The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program.

8.
Plant Physiol ; 157(4): 1628-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21980174

RESUMEN

Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.


Asunto(s)
Arabidopsis/genética , Proteínas de Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Oligodesoxirribonucleótidos/genética , Triticum/genética , Arabidopsis/metabolismo , Transporte Biológico , Carotenoides/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Técnicas de Silenciamiento del Gen , Oligodesoxirribonucleótidos/síntesis química , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/genética , Oxidorreductasas/genética , Oligonucleótidos Fosforotioatos/síntesis química , Oligonucleótidos Fosforotioatos/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Nicotiana/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA