Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Eur J Hum Genet ; 32(7): 819-826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528056

RESUMEN

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.


Asunto(s)
Anomalías Múltiples , Metilación de ADN , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Mosaicismo , Proteínas de Neoplasias , Enfermedades Vestibulares , Humanos , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/diagnóstico , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Proteínas de Unión al ADN/genética , Masculino , Femenino , Proteínas de Neoplasias/genética , Niño , Preescolar , Adolescente , Mutación de Línea Germinal , Lactante , Fenotipo , Adulto
2.
J Med Genet ; 60(9): 842-849, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37019617

RESUMEN

BACKGROUND: Studies suggest that Wilms tumours (WT) are caused by underlying genetic (5%-10%) and epigenetic (2%-29%) mechanisms, yet studies covering both aspects are sparse. METHODS: We performed prospective whole-genome sequencing of germline DNA in Danish children diagnosed with WT from 2016 to 2021, and linked genotypes to deep phenotypes. RESULTS: Of 24 patients (58% female), 3 (13%, all female) harboured pathogenic germline variants in WT risk genes (FBXW7, WT1 and REST). Only one patient had a family history of WT (3 cases), segregating with the REST variant. Epigenetic testing revealed one (4%) additional patient (female) with uniparental disomy of chromosome 11 and Beckwith-Wiedemann syndrome (BWS). We observed a tendency of higher methylation of the BWS-related imprinting centre 1 in patients with WT than in healthy controls. Three patients (13%, all female) with bilateral tumours and/or features of BWS had higher birth weights (4780 g vs 3575 g; p=0.002). We observed more patients with macrosomia (>4250 g, n=5, all female) than expected (OR 9.98 (95% CI 2.56 to 34.66)). Genes involved in early kidney development were enriched in our constrained gene analysis, including both known (WT1, FBXW7) and candidate (CTNND1, FRMD4A) WT predisposition genes. WT predisposing variants, BWS and/or macrosomia (n=8, all female) were more common in female patients than male patients (p=0.01). CONCLUSION: We find that most females (57%) and 33% of all patients with WT had either a genetic or another indicator of WT predisposition. This emphasises the need for scrutiny when diagnosing patients with WT, as early detection of underlying predisposition may impact treatment, follow-up and genetic counselling.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Neoplasias Renales , Tumor de Wilms , Masculino , Femenino , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Macrosomía Fetal/genética , Impresión Genómica , Tumor de Wilms/genética , Genotipo , Síndrome de Beckwith-Wiedemann/patología , Metilación de ADN/genética , Susceptibilidad a Enfermedades , Neoplasias Renales/genética , Células Germinativas/patología
3.
Genes (Basel) ; 14(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36833172

RESUMEN

FOXG1 (Forkhead box g1) syndrome is a neurodevelopmental disorder caused by a defective transcription factor, FOXG1, important for normal brain development and function. As FOXG1 syndrome and mitochondrial disorders have shared symptoms and FOXG1 regulates mitochondrial function, we investigated whether defective FOXG1 leads to mitochondrial dysfunction in five individuals with FOXG1 variants compared to controls (n = 6). We observed a significant decrease in mitochondrial content and adenosine triphosphate (ATP) levels and morphological changes in mitochondrial network in the fibroblasts of affected individuals, indicating involvement of mitochondrial dysfunction in FOXG1 syndrome pathogenesis. Further investigations are warranted to elucidate how FOXG1 deficiency impairs mitochondrial homeostasis.


Asunto(s)
Síndrome de Rett , Humanos , Encéfalo/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas del Tejido Nervioso
5.
Clin Epigenetics ; 14(1): 143, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345041

RESUMEN

BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impresión Genómica , Metilación de ADN , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Trastornos del Crecimiento/genética , Técnicas y Procedimientos Diagnósticos
6.
Genes (Basel) ; 12(10)2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34680906

RESUMEN

Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Serina-Treonina Quinasas TOR/genética , Síndrome de Tourette/genética , Gemelos Monocigóticos/genética , Femenino , Humanos , Masculino , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Síndrome de Tourette/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445333

RESUMEN

Lynch syndrome (LS) is one of the most common hereditary cancer predisposition syndromes worldwide. Individuals with LS have a high risk of developing colorectal or endometrial cancer, as well as several other cancers. LS is caused by autosomal dominant pathogenic variants in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, PMS2 or MSH6, and typically include truncating variants, such as frameshift, nonsense or splicing variants. However, a significant number of missense, intronic, or silent variants, or small in-frame insertions/deletions, are detected during genetic screening of the MMR genes. The clinical effects of these variants are often more difficult to predict, and a large fraction of these variants are classified as variants of uncertain significance (VUS). It is pivotal for the clinical management of LS patients to have a clear genetic diagnosis, since patients benefit widely from screening, preventive and personal therapeutic measures. Moreover, in families where a pathogenic variant is identified, testing can be offered to family members, where non-carriers can be spared frequent surveillance, while carriers can be included in cancer surveillance programs. It is therefore important to reclassify VUSs, and, in this regard, functional assays can provide insight into the effect of a variant on the protein or mRNA level. Here, we briefly describe the disorders that are related to MMR deficiency, as well as the structure and function of MSH6. Moreover, we review the functional assays that are used to examine VUS identified in MSH6 and discuss the results obtained in relation to the ACMG/AMP PS3/BS3 criterion. We also provide a compiled list of the MSH6 variants examined by these assays. Finally, we provide a future perspective on high-throughput functional analyses with specific emphasis on the MMR genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Técnicas Genéticas , Animales , Proteínas de Unión al ADN/clasificación , Proteínas de Unión al ADN/fisiología , Pruebas Genéticas/métodos , Humanos , Proteínas Mutantes/clasificación , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Empalme del ARN/genética
8.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572860

RESUMEN

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal dystrophy, renal cysts, obesity and polydactyly. BBS genes have been implicated in ciliogenesis, hedgehog signaling and retinal pigment epithelium maturation. BBS1 and BBS5 are members of the BBSome, implicated in cilia transport of proteins, and BBS10 is a member of the chaperonin-complex, mediating BBSome assembly. In this study, involvement of BBS1, BBS5 and BBS10 in ciliogenesis and hedgehog signaling were investigated in BBS-defective patient fibroblasts as well as in RPE-hTERT cells following siRNA-mediated knockdown of the BBS genes. Furthermore, the ability of BBS1-defective induced pluripotent stem-cells (iPSCs) to differentiate into RPE cells was assessed. We report that cells lacking functional BBS5 or BBS10 have a reduced number of primary cilia, whereas cells lacking functional BBS1 display shorter primary cilia compared to wild-type cells. Hedgehog signaling was substantially impaired and Smoothened, a component of hedgehog signaling, was trapped inside the cilia of the BBS-defective cells, even in the absence of Smoothened agonist. Preliminary results demonstrated the ability of BBS1-defective iPSC to differentiate into RPE-65 expressing RPE-like cells. The BBS1-/--defective RPE-like cells were less pigmented, compared to RPE-like cells differentiated from control iPSCs, indicating an impact of BBS1 on RPE maturation.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Síndrome de Bardet-Biedl/patología , Línea Celular , Cilios/metabolismo , Cilios/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal
9.
Genes (Basel) ; 11(12)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353011

RESUMEN

Bi-allelic pathogenic variants in MERTK cause retinitis pigmentosa (RP). Since deletions of more than one exon have been reported repeatedly for MERTK, CNV (copy number variation) analysis of next-generation sequencing (NGS) data has proven important in molecular genetic diagnostics of MERTK. CNV analysis was performed on NGS data of 677 individuals with inherited retinal diseases (IRD) and confirmed by quantitative RT-PCR analysis. Clinical evaluation was based on retrospective records. Clinical re-examination included visual field examination, dark adaption, scotopic and photopic full-field electroretinograms (ffERG), multifocal ERG (mfERG) and optic coherence tomography (OCT). Fourteen variants were detected in MERTK in six individuals, three of which were deletions of more than one exon. Clinical examinations of five out of six individuals revealed a severe phenotype with early-onset generalized retinal dystrophy with night blindness and progressive visual field loss; however, one individual had a milder phenotype. Three individuals had hearing impairments. We show that deletions represent a substantial part of the causative variants in MERTK and emphasize that CNV analysis should be included in the molecular genetic diagnostics of IRDs.


Asunto(s)
Retinitis Pigmentosa/genética , Tirosina Quinasa c-Mer/genética , Adolescente , Adulto , Edad de Inicio , Alelos , Causalidad , Niño , Variaciones en el Número de Copia de ADN , Técnicas de Diagnóstico Oftalmológico , Progresión de la Enfermedad , Exones/genética , Femenino , Eliminación de Gen , Pérdida Auditiva/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Ceguera Nocturna/genética , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/fisiopatología , Campos Visuales , Tirosina Quinasa c-Mer/deficiencia
10.
J Clin Med ; 9(3)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106411

RESUMEN

Chromothripsis is a mutational mechanism leading to complex and relatively clustered chromosomal rearrangements, resulting in diverse phenotypic outcomes depending on the involved genomic landscapes. It may occur both in the germ and the somatic cells, resulting in congenital and developmental disorders and cancer, respectively. Asymptomatic individuals may be carriers of chromotriptic rearrangements and experience recurrent reproductive failures when two or more chromosomes are involved. Several mechanisms are postulated to underlie chromothripsis. The most attractive hypothesis involves chromosome pulverization in micronuclei, followed by the incorrect reassembly of fragments through DNA repair to explain the clustered nature of the observed complex rearrangements. Moreover, exogenous or endogenous DNA damage induction and dicentric bridge formation may be involved. Chromosome instability is commonly observed in the cells of patients with DNA repair disorders, such as ataxia telangiectasia, Nijmegen breakage syndrome, and Bloom syndrome. In addition, germline variations of TP53 have been associated with chromothripsis in sonic hedgehog medulloblastoma and acute myeloid leukemia. In the present review, we focus on the underlying mechanisms of chromothripsis and the involvement of defective DNA repair genes, resulting in chromosome instability and chromothripsis-like rearrangements.

11.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639323

RESUMEN

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/genética , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/mortalidad , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/mortalidad , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Herencia Materna , Organogénesis , Herencia Paterna , Linaje , Polimorfismo de Nucleótido Simple/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box/metabolismo
12.
Clin Genet ; 95(3): 403-408, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30417326

RESUMEN

Rett syndrome is rarely suspected in males because of the X-linked dominant inheritance. In the literature, only six male patients have been reported with methyl-CpG-binding protein 2 (MECP2) mosaicism. Next-generation sequencing (NGS) methods have enabled better detection of somatic mosaicism compared to conventional Sanger sequencing; however, mosaics can still be difficult to detect. We present clinical and molecular findings in two males mosaic for a pathogenic MECP2 variant. Both have been reexamined using deep sequencing of DNA isolated from four different cell tissues (blood, muscle, fibroblasts and oral mucosa). Deep sequencing of the different tissues revealed that the variants were present in all tissues. In one patient, the molecular diagnosis could only be established by reexamination after a normal whole exome sequencing, and the other case is an example of reverse genetic diagnostics. Rett syndrome should be considered in males with neurodevelopmental delay and stereotypical hand movements. Subsequent to clinical diagnosis males should be investigated with NGS-based technologies of MECP2 with high read depth and a low threshold for variant calls. If the initial analysis on full blood derived DNA fails to confirm the suspicion, we recommend repeating the analysis on another tissue, preferentially fibroblasts to increase the diagnostic yield.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Mosaicismo , Mutación , Fenotipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Alelos , Biopsia , Niño , Facies , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Masculino
13.
Nat Rev Endocrinol ; 14(4): 229-249, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377879

RESUMEN

Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.


Asunto(s)
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/terapia , Consenso , Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/genética , Variaciones en el Número de Copia de ADN , Metilación de ADN , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias de Células Germinales y Embrionarias/etiología , Polimorfismo de Nucleótido Simple , Diagnóstico Prenatal , Técnicas Reproductivas Asistidas
14.
Scand J Clin Lab Invest ; 77(8): 617-621, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29037082

RESUMEN

Fabry disease is an X- linked inherited lysosomal storage disease caused by mutations in the GLA gene encoding the lysosomal enzyme alpha-galactosidase A (α-Gal A). The possible pathological significance of the D313Y variant in the GLA gene has not been verified and it may be a Fabry variant. Our aim was to elucidate whether the presence of the D313Y variant influenced the α-Gal A activity or resulted in Fabry symptoms or Fabry organ involvement. In two Danish families the presence of the D313Y variant did not result in reduced α-Gal A activity or clinical Fabry manifestations in males, and the presence in Fabry females did not significantly enhance the phenotype of a known causative mutation in the GLA gene (G271S). Our findings indicate that the D313Y variant is not causative to nor enhancing Fabry disease phenotype. The D313Y variant in the GLA gene was not disease causative in 2 Danish families. Investigating male family members were crucial in excluding the Fabry phenotype, and thus very important for proper genetic counceling of all family members, as well as overdiagnosing a devastating genetic disease.


Asunto(s)
Enfermedad de Fabry/genética , Mutación Missense , alfa-Galactosidasa/genética , Adulto , Anciano , Células Cultivadas , Niño , Análisis Mutacional de ADN , Enfermedad de Fabry/enzimología , Femenino , Fibroblastos/enzimología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Leucocitos/enzimología , Masculino , Persona de Mediana Edad , Linaje , Inactivación del Cromosoma X , alfa-Galactosidasa/metabolismo
15.
Nat Rev Endocrinol ; 13(2): 105-124, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585961

RESUMEN

This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.


Asunto(s)
Manejo de la Enfermedad , Internacionalidad , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/terapia , Hormona Liberadora de Gonadotropina/uso terapéutico , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Síndrome de Silver-Russell/metabolismo
16.
J Glaucoma ; 25(12): 926-930, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27820421

RESUMEN

PURPOSE OF THE STUDY: Primary congenital glaucoma (PCG OMIM 231300) can be caused by pathogenic sequence variations in cytochrome P450, subfamily 1, polypeptide 1 (CYP1B1). The purpose of this study was to investigate the contribution of sequence variations in CYP1B1 in a cohort of individuals with PCG residing in Denmark. METHODS: The study included 37 unrelated individuals with PCG. Individuals were investigated for CYP1B1 mutations by Sanger sequencing of polymerase chain reaction products using BigDye terminators and capillary electrophoresis. RESULTS: A total of 12 mutations were identified and 5 of these were novel. Six were missense mutations; 4 were truncating mutations (2 nonsense and 2 frameshift); 1 was an in-frame deletion and 1 was an in-frame duplication. Mutations in CYP1B1 could fully explain the PCG phenotype in 7 individuals (18%). Five individuals were compound heterozygous or presumed compound heterozygous, 1 was homozygous and 1 was apparently homozygous. Three individuals were heterozygous for sequence variations in CYP1B1 thought to be pathogenic-one of these was p.(Tyr81Asn). Several known sequence variations with presumably no functional effect were found in the cohort. CONCLUSIONS: In this study, we identified 12 CYP1B1 mutations, 5 of which were novel. The frequency of CYP1B1 mutations in this cohort was comparable with other populations. We also detected an individual heterozygous for p.(Tyr81Asn) mutation, previously suggested to cause autosomal dominant primary open-angle glaucoma.


Asunto(s)
Citocromo P-450 CYP1B1/genética , ADN/genética , Glaucoma de Ángulo Abierto/genética , Presión Intraocular , Mutación , Citocromo P-450 CYP1B1/metabolismo , Análisis Mutacional de ADN , Dinamarca/epidemiología , Femenino , Glaucoma de Ángulo Abierto/congénito , Glaucoma de Ángulo Abierto/epidemiología , Humanos , Incidencia , Masculino , Mutación Missense , Fenotipo , Reacción en Cadena de la Polimerasa
17.
Stem Cell Res ; 16(3): 553-6, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27346190

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs) from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of genomically integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. This iPSC line could be useful for the investigation of SCA3 disease mechanisms.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Enfermedad de Machado-Joseph/patología , Adolescente , Ataxina-3/genética , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipificación , Factor 4 Similar a Kruppel , Enfermedad de Machado-Joseph/metabolismo , Masculino , Plásmidos/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Stem Cell Res ; 16(3): 589-92, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27346191

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study, induced pluripotent stem cells (iPSCs) were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L-MYC, LIN28, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. Potentially, this iPSC line could be a useful tool for the investigation of SCA3 disease mechanisms.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Enfermedad de Machado-Joseph/patología , Ataxina-3/genética , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipificación , Factor 4 Similar a Kruppel , Enfermedad de Machado-Joseph/metabolismo , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Plásmidos/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Bipolar Disord ; 17(2): 205-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25053281

RESUMEN

OBJECTIVES: Breakpoints of chromosomal abnormalities facilitate identification of novel candidate genes for psychiatric disorders. Genome-wide significant evidence supports the linkage between chromosome 17q25.3 and bipolar disorder (BD). Co-segregation of translocation t(9;17)(q33.2;q25.3) with psychiatric disorders has been reported. We aimed to narrow down these chromosomal breakpoint regions and to investigate the associations between single nucleotide polymorphisms within these regions and BD as well as schizophrenia (SZ) in large genome-wide association study samples. METHODS: We cross-linked Danish psychiatric and cytogenetic case registers to identify an individual with both t(9;17)(q33.2;q25.3) and BD. Fluorescent in situ hybridization was employed to map the chromosomal breakpoint regions of this proband. We accessed the Psychiatric Genomics Consortium BD (n = 16,731) and SZ (n = 21,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213 (RNF213), and regulatory-associated protein of mammalian target of rapamycin (mTOR) (RPTOR)] were found to be located within the 17q25.3 breakpoint region. NPTX1 was significantly associated with BD (p = 0.004), while ENDOV was significantly associated with SZ (p = 0.0075) after Bonferroni correction. CONCLUSIONS: Prior linkage evidence and our findings suggest NPTX1 as a novel candidate gene for BD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Bipolar/genética , Proteína C-Reactiva/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Proteínas del Tejido Nervioso/genética , Esquizofrenia/genética , Ubiquitina-Proteína Ligasas/genética , Adenosina Trifosfatasas , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 9/genética , Familia , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Polimorfismo de Nucleótido Simple , Proteína Reguladora Asociada a mTOR , Translocación Genética/genética
20.
Stem Cell Reports ; 3(3): 404-13, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25241739

RESUMEN

The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion, transient p53 suppression increases reprogramming efficiency without affecting genomic stability, rendering the method suitable for in vitro mechanistic studies with the possibility for future clinical translation.


Asunto(s)
Apoptosis , Reprogramación Celular , Daño del ADN , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular , Variaciones en el Número de Copia de ADN , Fibroblastos/citología , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Humanos , Células Madre Pluripotentes Inducidas/citología , Neurogénesis , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA