Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Pharm ; 606: 120867, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34242629

RESUMEN

Jatropha pelargoniifolia (JP) is a medicinal plant that is widely used in traditional medicine owing to its broad range of therapeutic activities. Despite its promising pharmacological activities, the use of plant extracts has several limitations which can be overcome using pharmaceutical nanotechnology. The aim of this study was to systematically investigate the effect of nanoencapsulation on the antimicrobial and anticancer activities of JP extract. JP-loaded chitosan nanoparticles (JP-CSNPs) were prepared using the ionic gelation method and characterized in terms of size, polydispersity index, zeta potential, encapsulation efficiency, and release profile. Transmission electron microscopy was used to observe the morphology of the nanoparticles. The mean particle size, zeta potential, and encapsulation efficiency of optimized JP-CSNPs were 185.5 nm, 44 mV, and 78.5%, respectively. The release profile of the JP-CSNPs was mainly dependent on the pH of the surrounding medium, and the JP extract was released in a controlled manner over time. The total phenolic and flavonoid contents in JP extract were 191.8 mg GAE/g extract and 51.4 mg of QE/g extract, respectively. The results of a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that JP-CSNPs retained the antioxidant activity of unencapsulated JP extract. JP-CSNPs also exhibited higher antimicrobial activity against gram-positive bacteria than against gram-negative bacteria, and their minimum inhibitory concentration was 1.6-fold lower than that of blank nanoparticles, indicating the synergy between JP extract and nanoparticles. In vitro cytotoxicity studies using A549 human lung adenocarcinoma cells revealed that JP-CSNPs had a 2-fold lower half-maximal inhibitory concentration than free extract. Molecular docking analyses revealed that the active phytoconstituent of JP extract, linarin, binds strongly to the active sites of bacterial DNA gyrase B and human DNA topoisomerase IIα and thus, may inhibit their activities. Computational analysis results supported the in vitro finding that JP-CSNPs act as an anticancer and antimicrobial agent. Taken together, the results of this study highlighted the advantages of using CSNPs as a nanocarrier for herbal extracts, thus providing a potential strategy for improving plant-based therapeutics.


Asunto(s)
Quitosano , Jatropha , Nanopartículas , Humanos , Simulación del Acoplamiento Molecular , Tamaño de la Partícula
2.
Saudi Pharm J ; 28(3): 238-245, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194324

RESUMEN

Polyphenols has attained pronounced attention due to their beneficial values of health and found to prevent several chronic diseases. Here, we elucidated binding mechanism between frequently consumed polyphenol "tea catechin" and milk protein bovine beta-lactoglobulin (ß-Lg). We investigated the conformational changes of ß-Lg due to interaction with catechin using spectroscopic and in silico studies. Fluorescence quenching data (Stern-Volmer quenching constant) revealed that ß-Lg interacted with catechin via dynamic quenching. Thermodynamic data revealed that the interaction between ß-Lg and catechin is endothermic and spontaneously interacted mainly through hydrophobic interactions. The UV-Vis absorption and far-UV circular dichroism (CD) spectroscopy exhibited that the tertiary as well as secondary structure of ß-Lg distorted after interaction with catechin. Molecular docking and simulation studies also confirm that catechin binds at the central cavity of ß-Lg with high affinity (~105 M-1) and hydrophobic interactions play significant role in the formation of a stable ß-Lg-catechin complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA