Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 19(5): 951-960, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413491

RESUMEN

PURPOSE: In virtual surgery, the appearance of 3D models constructed from CT images lacks realism, leading to potential misunderstandings among residents. Therefore, it is crucial to reconstruct realistic endoscopic scene using multi-view images captured by an endoscope. METHODS: We propose an Endoscope-NeRF network for implicit radiance fields reconstruction of endoscopic scene under non-fixed light source, and synthesize novel views using volume rendering. Endoscope-NeRF network with multiple MLP networks and a ray transformer network represents endoscopic scene as implicit field function with color and volume density at continuous 5D vectors (3D position and 2D direction). The final synthesized image is obtained by aggregating all sampling points on each ray of the target camera using volume rendering. Our method considers the effect of distance from the light source to the sampling point on the scene radiance. RESULTS: Our network is validated on the lung, liver, kidney and heart of pig collected by our device. The results show that the novel views of endoscopic scene synthesized by our method outperform existing methods (NeRF and IBRNet) in terms of PSNR, SSIM, and LPIPS metrics. CONCLUSION: Our network can effectively learn a radiance field function with generalization ability. Fine-tuning the pre-trained model on a new endoscopic scene to further optimize the neural radiance fields of the scene, which can provide more realistic, high-resolution rendered images for surgical simulation.


Asunto(s)
Endoscopía , Imagenología Tridimensional , Porcinos , Animales , Imagenología Tridimensional/métodos , Endoscopía/métodos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Humanos , Simulación por Computador , Cirugía Asistida por Computador/métodos , Hígado/cirugía , Hígado/diagnóstico por imagen , Pulmón/cirugía , Pulmón/diagnóstico por imagen
2.
Bioengineering (Basel) ; 10(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002426

RESUMEN

The rapid development of computers and robots has seen robotic minimally invasive surgery (RMIS) gradually enter the public's vision. RMIS can effectively eliminate the hand vibrations of surgeons and further reduce wounds and bleeding. However, suitable RMIS and virtual reality-based digital-twin surgery trainers are still in the early stages of development. Extensive training is required for surgeons to adapt to different operating modes compared to traditional MIS. A virtual-reality-based digital-twin robotic minimally invasive surgery (VRDT-RMIS) simulator was developed in this study, and its effectiveness was introduced. Twenty-five volunteers were divided into two groups for the experiment, the Expert Group and the Novice Group. The use of the VRDT-RMIS simulator for face, content, and structural validation training, including the peg transfer module and the soft tissue cutting module, was evaluated. Through subjective and objective evaluations, the potential roles of vision and haptics in robot surgery training were explored. The simulator can effectively distinguish surgical skill proficiency between experts and novices.

3.
Front Oncol ; 12: 811279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494066

RESUMEN

Microbes and microbiota dysbiosis are correlated with the development of lung cancer; however, the airway taxa characteristics and bacterial topography in synchronous multiple primary lung cancer (sMPLC) are not fully understood. The present study aimed to investigate the microbiota taxa distribution and characteristics in the airways of patients with sMPLC and clarify specimen acquisition modalities in these patients. Using the precise positioning of electromagnetic navigation bronchoscopy (ENB), we analyzed the characteristics of the respiratory microbiome, which were collected from different sites and using different sampling methods. Microbiome predictor variables were bacterial DNA burden and bacterial community composition based on 16sRNA. Eight non-smoking patients with sMPLC in the same pulmonary lobe were included in this study. Compared with other sampling methods, bacterial burden and diversity were higher in surface areas sampled by bronchoalveolar lavage (BAL). Bacterial topography data revealed that the segment with sMPLC lesions provided evidence of specific colonizing bacteria in segments with lesions. After taxonomic annotation, we identified 4863 phylotypes belonging to 185 genera and 10 different phyla. The four most abundant specific bacterial community members detected in the airway containing sMPLC lesions were Clostridium, Actinobacteria, Fusobacterium, and Rothia, which all peaked at the segments with sMPLC lesions. This study begins to define the bacterial topography of the respiratory tract in patients with sMPLC and provides an approach to specimen acquisition for sMPLC, namely BAL fluid obtained from segments where lesions are located.

4.
IEEE J Biomed Health Inform ; 25(5): 1495-1507, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684049

RESUMEN

Chronic kidney disease has become one of the diseases with the highest morbidity and mortality in kidney diseases, and there are still some problems in surgery. During the operation, the surgeon can only operate on two-dimensional ultrasound images and cannot determine the spatial position relationship between the lesion and the medical puncture needle in real-time. The average number of punctures per patient will reach 3 to 4, Increasing the incidence of complications after a puncture. This article starts with ultrasound-guided renal biopsy navigation training, optimizes puncture path planning, and puncture training assistance. The augmented reality technology, combined with renal puncture surgery training was studied. This paper develops a prototype ultrasound-guided renal biopsy surgery training system, which improves the accuracy and reliability of the system training. The system is compared with the VR training system. The results show that the augmented reality training platform is more suitable as a surgical training platform. Because it takes a short time and has a good training effect.


Asunto(s)
Realidad Aumentada , Biopsia , Cirugía Asistida por Computador , Humanos , Reproducibilidad de los Resultados , Ultrasonografía Intervencional
5.
IEEE Trans Industr Inform ; 17(9): 6519-6527, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37981912

RESUMEN

A novel intelligent navigation technique for accurate image-guided COVID-19 lung biopsy is addressed, which systematically combines augmented reality (AR), customized haptic-enabled surgical tools, and deep neural network to achieve customized surgical navigation. Clinic data from 341 COVID-19 positive patients, with 1598 negative control group, have collected for the model synergy and evaluation. Biomechanics force data from the experiment are applied a WPD-CNN-LSTM (WCL) to learn a new patient-specific COVID-19 surgical model, and the ResNet was employed for the intraoperative force classification. To boost the user immersion and promote the user experience, intro-operational guiding images have combined with the haptic-AR navigational view. Furthermore, a 3-D user interface (3DUI), including all requisite surgical details, was developed with a real-time response guaranteed. Twenty-four thoracic surgeons were invited to the objective and subjective experiments for performance evaluation. The root-mean-square error results of our proposed WCL model is 0.0128, and the classification accuracy is 97%, which demonstrated that the innovative AR with deep learning (DL) intelligent model outperforms the existing perception navigation techniques with significantly higher performance. This article shows a novel framework in the interventional surgical integration for COVID-19 and opens the new research about the integration of AR, haptic rendering, and deep learning for surgical navigation.

6.
Int J Med Robot ; : e2160, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32890440

RESUMEN

BACKGROUND: Neurosurgery has exceptionally high requirements for minimally invasive and safety. This survey attempts to analyze the practical application of AR in neurosurgical navigation. Also, this survey describes future trends in augmented reality neurosurgical navigation systems. METHODS: In this survey, we searched related keywords "augmented reality", "virtual reality", "neurosurgery", "surgical simulation", "brain tumor surgery", "neurovascular surgery", "temporal bone surgery", and "spinal surgery" through Google Scholar, World Neurosurgery, PubMed and Science Direct. We collected 85 articles published over the past five years in areas related to this survey. RESULTS: Detailed study has been conducted on the application of AR in neurosurgery and found that AR is constantly improving the overall efficiency of doctor training and treatment, which can help neurosurgeons learn and practice surgical procedures with zero risks. CONCLUSIONS: Neurosurgical navigation is essential in neurosurgery. Despite certain technical limitations, it is still a necessary tool for the pursuit of maximum security and minimal intrusiveness. This article is protected by copyright. All rights reserved.

7.
Gland Surg ; 9(6): 1933-1944, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33447544

RESUMEN

BACKGROUND: Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder causing muscle weakness and characterized by a defect in synaptic transmission at the neuromuscular junction. The pathogenesis of this disease remains unclear. We aimed to predict the key signaling pathways of genetic variants and miRNAs in the pathogenesis of MG, and identify the key genes among them. METHODS: We searched published information regarding associated single nucleotide polymorphisms (SNPs) and differentially-expressed miRNAs in MG cases. We search of SNPs and miRNAs in literature databases about MG, then we used bioinformatic tools to predict target genes of miRNAs. Moreover, functional enrichment analysis for key genes was carried out utilizing the Cytoscape-plugin, known as ClueGO. These key genes were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then a miRNA-target gene regulatory network was established to screen key genes. RESULTS: Five genes containing SNPs associated with MG risk were involved in the inflammatory bowel disease (IBD) signaling pathway, and FoxP3 was the key gene. MAPK1, SMAD4, SMAD2 and BCL2 were predicted to be targeted by the 18 miRNAs and to act as the key genes in adherens, junctions, apoptosis, or cancer-related pathways respectively. These five key genes containing SNPs or targeted by miRNAs were found to be involved in negative regulation of T cell differentiation. CONCLUSIONS: We speculate that SNPs cause the genes to be defective or the miRNAs to downregulate the factors that subsequently negatively regulate regulatory T cells and trigger the onset of MG.

8.
Appl Bionics Biomech ; 2019: 9756842, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341513

RESUMEN

Realistic tool-tissue interactive modeling has been recognized as an essential requirement in the training of virtual surgery. A virtual basic surgical training framework integrated with real-time force rendering has been recognized as one of the most immersive implementations in medical education. Yet, compared to the original intraoperative data, there has always been an argument that these data are represented by lower fidelity in virtual surgical training. In this paper, a dynamic biomechanics experimental framework is designed to achieve a highly immersive haptic sensation during the biopsy therapy with human respiratory motion; it is the first time to introduce the idea of periodic extension idea into the dynamic percutaneous force modeling. Clinical evaluation is conducted and performed in the Yunnan First People's Hospital, which not only demonstrated a higher fitting degree (AVG: 99.36%) with the intraoperation data than previous algorithms (AVG: 87.83%, 72.07%, and 66.70%) but also shows a universal fitting range with multilayer tissue. 27 urologists comprising 18 novices and 9 professors were invited to the VR-based training evaluation based on the proposed haptic rendering solution. Subjective and objective results demonstrated higher performance than the existing benchmark training simulator. Combining these in a systematic approach, tuned with specific fidelity requirements, haptically enabled medical simulation systems would be able to provide a more immersive and effective training environment.

9.
J Healthc Eng ; 2019: 6813719, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723539

RESUMEN

The aim of this study is to develop and assess the peg transfer training module face, content and construct validation use of the box, virtual reality (VR), cognitive virtual reality (CVR), augmented reality (AR), and mixed reality (MR) trainer, thereby to compare advantages and disadvantages of these simulators. Training system (VatsSim-XR) design includes customized haptic-enabled thoracoscopic instruments, virtual reality helmet set, endoscope kit with navigation, and the patient-specific corresponding training environment. A cohort of 32 trainees comprising 24 novices and 8 experts underwent the real and virtual simulators that were conducted in the department of thoracic surgery of Yunnan First People's Hospital. Both subjective and objective evaluations have been developed to explore the visual and haptic potential promotions in peg transfer education. Experiments and evaluation results conducted by both professional and novice thoracic surgeons show that the surgery skills from experts are better than novices overall, AR trainer is able to provide a more balanced training environments on visuohaptic fidelity and accuracy, box trainer and MR trainer demonstrated the best realism 3D perception and surgical immersive performance, respectively, and CVR trainer shows a better clinic effect that the traditional VR trainer. Combining these in a systematic approach, tuned with specific fidelity requirements, medical simulation systems would be able to provide a more immersive and effective training environment.


Asunto(s)
Cirugía Torácica Asistida por Video/educación , Adulto , Realidad Aumentada , Competencia Clínica , Simulación por Computador , Instrucción por Computador/métodos , Instrucción por Computador/estadística & datos numéricos , Femenino , Humanos , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Programas Informáticos , Cirugía Torácica Asistida por Video/estadística & datos numéricos , Interfaz Usuario-Computador , Realidad Virtual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA