Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Proteomics ; 145: 237-245, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27268958

RESUMEN

UNLABELLED: Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP). Selected differentially expressed proteins identified by both LC-MS/MS and 2D-PAGE approaches were further verified using reverse-phase protein microarrays. LC-MS/MS captured the effects of cigarette smoke (CS) on the lung proteome more comprehensively than 2D-PAGE. However, an integrated analysis of both proteomics data sets showed that 2D-PAGE data complement the LC-MS/MS results by supporting the overall trend of lower effects of pMRTP aerosol than CS on the lung proteome. Biological effects of CS exposure supported by both methods included increases in immune-related, surfactant metabolism, proteasome, and actin cytoskeleton protein clusters. Overall, while 2D-PAGE has its value, especially as a complementary method for the analysis of effects on intact proteins, LC-MS/MS approaches will likely be the method of choice for proteome analysis in systems toxicology investigations. SIGNIFICANCE: Quantitative proteomics is anticipated to play a growing role within systems toxicology assessment frameworks in the future. To further understand how different proteomics technologies can contribute to toxicity assessment, we conducted a quantitative proteomics analysis using 2D-PAGE and isobaric tag-based LC-MS/MS approaches and compared the results produced from the 2 approaches. Using a prototypic modified risk tobacco product (pMRTP) as our test item, we show compared with cigarette smoke, how 2D-PAGE results can complement and support LC-MS/MS data, demonstrating the much lower effects of pMRTP aerosol than cigarette smoke on the mouse lung proteome. The combined analysis of 2D-PAGE and LC-MS/MS data identified an effect of cigarette smoke on the proteasome and actin cytoskeleton in the lung.


Asunto(s)
Aerosoles/efectos adversos , Pulmón/química , Proteoma/efectos de los fármacos , Proteómica/métodos , Humo/efectos adversos , Actinas/efectos de los fármacos , Animales , Cromatografía Liquida , Citoesqueleto/efectos de los fármacos , Electroforesis en Gel Bidimensional , Exposición por Inhalación/efectos adversos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteoma/análisis , Espectrometría de Masas en Tándem , Productos de Tabaco
2.
Transl Oncol ; 4(1): 38-46, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21286376

RESUMEN

RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo.

3.
Electrophoresis ; 30(14): 2469-76, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19639567

RESUMEN

The protein tyrosine phosphatase PRL-3 is an appealing therapeutic cancer target for its well described involvement in the metastasis progression. Nevertheless, very little is known about PRL-3 role in tumorigenesis. In the attempt to identify the protein target of this phosphatase we have devised a model system based on the use of highly invasive HCT116 colon cancer cells over-expressing PRL-3. We used 2-D difference gel electrophoresis combined with the fluorescence staining Pro-Q Diamond selective for phosphorylated proteins to monitor changes in the phosphorylation status of possible substrates. Proteins whose phosphorylation level was negatively affected by PRL-3 over-expression were identified by MS. Two proteins were found to be significantly dephosphorylated in this condition, the cytoskeletal protein ezrin and elongation factor 2. Ezrin has already been described as having a proactive role in cancer metastasis through control of its phosphorylation status, and the PRL-3-induced modulation of ezrin phosphorylation in HCT116 and human umblical vascular endothelial cells is the subject of a separate paper by Forte et al. [Biochim. Biophys. Acta 2008, 1783, 334-344]. The combination of 2-D difference in gel electrophoresis and Pro-Q Diamond was hence confirmed successful in analyzing changes of protein phosphorylation which enable the identification of kinase/phosphatase targets.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Proteínas de Neoplasias/análisis , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/análisis , Proteínas Quinasas/metabolismo , Coloración y Etiquetado/métodos , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Células HCT116 , Humanos , Proteínas de Neoplasias/metabolismo , Compuestos Organometálicos , Factor 2 de Elongación Peptídica/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo
4.
Rapid Commun Mass Spectrom ; 23(17): 2733-40, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19639556

RESUMEN

The Phosphatase of Regenerating Liver-3 (PRL-3) is a cysteine-based phosphatase (CBP) that is highly over-expressed in liver metastasis in colorectal cancer and suspected to be involved in the progression from tumor to metastasis. During substrate-specificity studies based on the screening of PRL-3 phosphatase activity on several phosphorylated synthetic peptides, we observed a decrease in activity depending on sample aging and storage conditions. By liquid chromatography combined with selective alkylation and mass spectrometry, we found two main PRL-3 inactivation pathways: a disulfide bond formation between the catalytic C104 and C49, blocking the enzyme in an inactive oxidized form, or the conversion of the catalytic C104 into glycine. We also found that the disulfide formation and the cysteine into glycine conversion are catalyzed by cations present in the sample after protein purification through a nickel column. By adding a cation chelator such as EDTA and de-oxygenating the sample with argon, PRL-3 phosphatase activity was preserved. These findings suggest that PRL-3, like other CBPs, is sensitive to inactivation by catalytic cysteine oxidation and this has implications for future studies of its activity and specificity.


Asunto(s)
Cisteína/química , Disulfuros/química , Glicina/química , Proteínas de Neoplasias/química , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Activación Enzimática , Humanos , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Oxidación-Reducción
5.
J Biol Chem ; 284(2): 1313-23, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19001363

RESUMEN

PCSK9 regulates low density lipoprotein receptor (LDLR) levels and consequently is a target for the prevention of atherosclerosis and coronary heart disease. Here we studied the interaction, of LDLR EGF(A/AB) repeats with PCSK9. We show that PCSK9 binds the EGF(AB) repeats in a pH-dependent manner. Although the PCSK9 C-terminal domain is not involved in LDLR binding, PCSK9 autocleavage is required. Moreover, we report the x-ray structure of the PCSK9DeltaC-EGF(AB) complex at neutral pH. Compared with the low pH PCSK9-EGF(A) structure, the new structure revealed rearrangement of the EGF(A) His-306 side chain and disruption of the salt bridge with PCSK9 Asp-374, thus suggesting the basis for enhanced interaction at low pH. In addition, the structure of PCSK9DeltaC bound to EGF(AB)(H306Y), a mutant associated with familial hypercholesterolemia (FH), reveals that the Tyr-306 side chain forms a hydrogen bond with PCSK9 Asp-374, thus mimicking His-306 in the low pH conformation. Consistently, Tyr-306 confers increased affinity for PCSK9. Importantly, we found that although the EGF(AB)(H306Y)-PCSK9 interaction is pH-independent, LDLR(H306Y) binds PCSK9 50-fold better at low pH, suggesting that factors other than His-306 contribute to the pH dependence of PCSK9-LDLR binding. Further, we determined the structures of EGF(AB) bound to PCSK9DeltaC containing the FH-associated D374Y and D374H mutations, revealing additional interactions with EGF(A) mediated by Tyr-374/His-374 and providing a rationale for their disease phenotypes. Finally, we report the inhibitory properties of EGF repeats in a cellular assay measuring LDL uptake.


Asunto(s)
Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Cristalografía por Rayos X , Humanos , Hiperlipoproteinemia Tipo II , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Proproteína Convertasa 9 , Proproteína Convertasas , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores de LDL/metabolismo , Serina Endopeptidasas/genética
6.
PLoS One ; 3(1): e1508, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18231595

RESUMEN

A novel and efficient tagArray technology was developed that allows rapid identification of antibodies which bind to receptors with a specific expression profile, in the absence of biological information. This method is based on the cloning of a specific, short nucleotide sequence (tag) in the phagemid coding for each phage-displayed antibody fragment (phage-Ab) present in a library. In order to set up and validate the method we identified about 10,000 different phage-Abs binding to receptors expressed in their native form on the cell surface (10 k Membranome collection) and tagged each individual phage-Ab. The frequency of each phage-Ab in a given population can at this point be inferred by measuring the frequency of its associated tag sequence through standard DNA hybridization methods. Using tiny amounts of biological samples we identified phage-Abs binding to receptors preferentially expressed on primary tumor cells rather than on cells obtained from matched normal tissues. These antibodies inhibited cell proliferation in vitro and tumor development in vivo, thus representing therapeutic lead candidates.


Asunto(s)
Anticuerpos Monoclonales/genética , Bacteriófagos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacocinética , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Resonancia por Plasmón de Superficie
7.
Biochim Biophys Acta ; 1783(2): 334-44, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18078820

RESUMEN

Phosphatase of Regenerating Liver-3 (PRL-3) is a small protein tyrosine phosphatase considered an appealing therapeutic cancer target due to its involvement in metastatic progression. However, despite its importance, the direct molecular targets of PRL-3 action are not yet known. Here we report the identification of Ezrin as a specific and direct cellular substrate of PRL-3. In HCT116 colon cancer cell line, Ezrin was identified among the cellular proteins whose phosphorylation level decreased upon ectopic over-expression of wtPRL-3 but not of catalytically inactive PRL-3 mutants. Although PRL-3 over-expression in HCT116 cells appeared to affect Ezrin phosphorylation status at both tyrosine residues and Thr567, suppression of the endogenous protein by RNA interference pointed to Ezrin-Thr567 as the residue primarily affected by PRL-3 action. In vitro dephosphorylation assays suggested Ezrin-Thr567 as a direct substrate of PRL-3 also proving this enzyme as belonging to the dual specificity phosphatase family. Furthermore, the same effect on levels of pThr567, but not on pTyr residues, was observed in endothelial cells pointing to Ezrin-pThr567 dephosphorylation as a mean through which PRL-3 exerts its function in promoting tumor progression as well as in the establishment of the new vasculature needed for tumor survival and expansion.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Catálisis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células HCT116 , Humanos , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Fosfotirosina/metabolismo , Interferencia de ARN , Especificidad por Sustrato/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
8.
Blood ; 109(5): 1834-40, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17077323

RESUMEN

Angiogenesis plays a key role in various physiologic and pathologic conditions, including tumor growth. Drm/gremlin, a member the Dan family of bone morphogenic protein (BMP) antagonists, is commonly thought to affect different processes during growth, differentiation, and development by heterodimerizing various BMPs. Here, we identify Drm/gremlin as a novel proangiogenic factor expressed by endothelium. Indeed, Drm/gremlin was purified to homogeneity from the conditioned medium of transformed endothelial cells using an endothelial-cell sprouting assay to follow protein isolation. Accordingly, recombinant Drm/gremlin stimulates endothelial-cell migration and invasion in fibrin and collagen gels, binds with high affinity to various endothelial cell types, and triggers tyrosine phosphorylation of intracellular signaling proteins. Also, Drm/gremlin induces neovascularization in the chick embryo chorioallantoic membrane. BMP4 does not affect Drm/gremlin interaction with endothelium, and both molecules exert a proangiogenic activity in vitro and in vivo when administered alone or in combination. Finally, Drm/gremlin is produced by the stroma of human tumor xenografts in nude mice, and it is highly expressed in endothelial cells of human lung tumor vasculature when compared with non-neoplastic lung. Our observations point to a novel, previously unrecognized capacity of Drm/gremlin to interact directly with target endothelial cells and to modulate angiogenesis.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Secuencia de Aminoácidos , Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/aislamiento & purificación , Inductores de la Angiogénesis/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Embrión de Pollo , Citocinas , Células Endoteliales/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/aislamiento & purificación , Ratones , Datos de Secuencia Molecular , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Biol Chem ; 282(8): 5536-44, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17166835

RESUMEN

The hepatitis C virus encodes a single polyprotein that is processed by host and viral proteases to yield at least 10 mature viral proteins. The nonstructural (NS) protein 5A is a phosphoprotein, and experimental data indicate that the phosphorylation state of NS5A is important for the outcome of viral RNA replication. We were able to identify kinase inhibitors that specifically inhibit the formation of the hyperphosphorylated form of NS5A (p58) in cells. These kinase inhibitors were used for inhibitor affinity chromatography in order to identify the cellular targets of these compounds. The kinases casein kinase I (CKI), p38 MAPK, CIT (Citron Rho-interacting kinase), GAK, JNK2, PKA, RSK1/2, and RIPK2 were identified in the high affinity binding fractions of two NS5A hyperphosphorylation inhibitors (NS5A-p58-i). Even though these kinases are targets of the NS5A-p58-i, the only kinase showing an effect on NS5A hyperphosphorylation was confirmed to be CKI-alpha. Although this finding does not exclude the possibility that other kinase(s) might be involved in basal or regulatory phosphorylation of NS5A, we show here that NS5A is a direct substrate of CKI-alpha. Moreover, in vitro phosphorylation of NS5A by CKI-alpha resulted for the first time in the production of basal and hyperphosphorylated forms resembling those produced in cells. In vitro kinase reactions performed with NS5A peptides show that Ser-2204 is a preferred substrate residue for CKI-alpha after pre-phosphorylation of Ser-2201.


Asunto(s)
Caseína Quinasa Ialfa/metabolismo , Hepacivirus/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Animales , Caseína Quinasa Ialfa/química , Caseína Quinasa Ialfa/aislamiento & purificación , Línea Celular , Cromatografía de Afinidad , Hepacivirus/química , Humanos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/aislamiento & purificación , Replicación Viral/efectos de los fármacos
10.
Artículo en Inglés | MEDLINE | ID: mdl-16431169

RESUMEN

Nuclear proteins play a major role in controlling cell functions. Differential proteomic analysis of nuclear proteins by combined 2D gel electrophoresis (2D-E) and mass spectrometry procedures can provide useful information to understand the control of cell proliferation and differentiation. To identify proteins involved in dedifferentiation, we used a differential proteomics approach by comparing nuclear extracts from the differentiated rat thyroid cell line FRTL-5 and the derived undifferentiated Ki-mol cell line, obtained by transformation with the Ki-ras oncogene. Thirteen proteins were identified as differently expressed in the nuclear compartment between the two cell lines. RT-PCR analysis performed on seven differently expressed genes showed that only in two cases the difference may be ascribable to a transcriptional mechanism. Since one of the identified proteins, namely apurinic apyrimidinic endonuclease/redox effector factor-1 (APE1/Ref-1), is suspected to play a role in thyroid tumorigenesis, we used a glutathione S-transferase (GST)-pulldown assay coupled to a 2D electrophoretic/matrix assisted laser desorption ionization-time of flight (MALDI-TOF)-mass spectrometry (MS) analysis to detect and identify its interacting partners. We show here that beta-actin directly interacted with APE1/Ref-1, as confirmed by co-immunoprecipitation assays and that this interaction was enhanced by oxidative stress on FRTL-5 cells.


Asunto(s)
Núcleo Celular/química , Proteínas Nucleares/análisis , Proteómica , Glándula Tiroides/química , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Inmunohistoquímica , Inmunoprecipitación , Proteínas Nucleares/aislamiento & purificación , Ratas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glándula Tiroides/citología
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 815(1-2): 157-68, 2005 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-15652806

RESUMEN

Characterizing the complete proteome of multicellular organisms is a challenging task using the currently available technologies. With the increasing degree of genetic complexity, animals acquire a broader repertoire of options to meet environmental challenges. Mammalian cells from different tissues/body fluids express different thousands of proteins with a predicted dynamic range of up to five to six orders of magnitude, thus necessitating the whole arsenal of dedicated analytical strategies for a detailed proteome characterization. Nevertheless, 2D-E analysis of whole cellular lysates still remains the most used initial approach for the proteomic description of specialized cells. It enables to obtain an overview of the main soluble protein components of a specific tissue/body fluid, allowing comparison between different cellular types and molecular description of organ specialization. Massive proteomic investigations have been reported mainly in the case of human, mouse and rat, allowing comparative analysis. For this reason, a research project focused on the 2D-E characterization of tissues and biological fluids from other domestic mammals has been undertaken in our laboratory. A number of high-resolution reference electrophoretic maps have been established for liver, kidney, muscle, plasma and red blood cells samples from Holstein Friesian bovine female individuals. Among the 1863 distinct protein features detected, 534 species were identified and associated to 209 different genes by a combination of MALDI-TOF mass fingerprint, capillary LC-ESI-IT-MS-MS and image gel matching procedures. Identified polypeptide species and differences in expression profiles between various tissues/fluids clearly reflected organ biochemical specialization. This experimental output allowed establishing a 2D-E bovine database accessible at the URL address for image comparison.


Asunto(s)
Líquidos Corporales/química , Bovinos/genética , Riñón/química , Músculo Esquelético/química , Proteoma , Animales , Proteínas Sanguíneas/genética , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Eritrocitos/química , Espectrometría de Masas , Músculo Esquelético/citología , Proteoma/genética
12.
Biochemistry ; 42(15): 4430-43, 2003 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-12693939

RESUMEN

Aminoacylase 1 is a zinc-binding metalloprotease catalyzing the hydrolysis of N(alpha)-acylated l-amino acids; it presents altered expression levels in different renal and small cell lung carcinomas. A description of its redox and oligomerization state was achieved by combined biochemical and mass spectrometric procedures. A topological analysis of the enzyme structural architecture was derived from limited proteolysis and selective chemical modification experiments, using a broad range of proteases and chemical reagents. The analysis of the reaction products by different mass spectrometric techniques identified 26 amino acids as being accessible on the molecular surface, defining polypeptide regions exposed in the structure of the dimeric protein. The nature of the intermolecular contact zone between monomers was investigated by cross-linking reaction and mass mapping experiments. The cross-linked dimer was isolated, and the intermolecular cross-linked peptides were characterized, thus demonstrating the spatial proximity of Lys220 and Lys231 at the dimerization interface. Standard modeling procedures based on automatic alignment on the structure of members of the M20 peptidase family failed to produce a dimeric model consistent with experimental data. Discrepancies were observed mainly at the dimer interface and at loop regions. Therefore, a refined model for this dimeric protease was calculated by selecting the one able to generate a structure fully compatible with experimental findings, among all possible suboptimal sequence alignments. According to this model, each aminoacylase monomer consists of two domains: a globular catalytic subunit (residues 1-188 and 311-399) consisting of a beta-sheet sandwiched between alpha-helices and a second beta-sheet located on the surface, and the dimerization domain (residues 189-310) folding into a beta-sheet flanked on one side by two alpha-helices. These results indicate that reliable approaches such as limited proteolysis, selective chemical modification, and cross-linking coupled to mass spectrometry can be used to test and optimize molecular models of multimeric proteins and highlight problems in automatic model building.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Dimerización , Electroforesis en Gel de Poliacrilamida , Endopeptidasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Estructura Terciaria de Proteína , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Porcinos/metabolismo
13.
Biochem J ; 372(Pt 2): 443-51, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12608891

RESUMEN

Ecto-5'-nucleotidase (ecto-5'-NT) is a glycosylphosphatidylinositol-anchored membrane-bound protein that is ubiquitous in mammalian tissues. It is a target for a number of therapeutic drugs since increased levels of the enzyme correlate with various disease states. In this investigation, we describe the properties of a soluble ecto-5'-NT derived from bull seminal plasma. The protein was highly heterogeneous as demonstrated by chromatofocusing and two-dimensional PAGE. Sequencing analyses revealed a truncated polypeptide lacking the glycosylphospatidylinositol attachment site, suggesting that it is produced post-translationally by cleavage at Gln(547) and/or Phe(548). Heterogeneity was largely due to differential glycosylation, especially in the oligosaccharides linked to Asn(403). Significant differences in substrate specificity were observed between isoforms and, on the basis of molecular-modelling studies, were interpreted in terms of variable glycosylation causing steric hindrance of the substrate-binding site. Thus the soluble forms of ecto-5'-NT found in bull seminal plasma are unique both biochemically and structurally, and have a putative role in signalling interactions with spermatozoa following ejaculation and capacitation in the female reproductive tract.


Asunto(s)
5'-Nucleotidasa/química , Semen/enzimología , 5'-Nucleotidasa/aislamiento & purificación , 5'-Nucleotidasa/metabolismo , Aminoácidos/análisis , Aminoácidos/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Masculino , Modelos Moleculares , Oligosacáridos/química , Fragmentos de Péptidos/química , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Espermatozoides/química , Espermatozoides/metabolismo , Tripsina/metabolismo
14.
J Biol Chem ; 278(11): 9290-7, 2003 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-12645527

RESUMEN

The beta-amyloid peptide (Abeta) present in the senile plaques of Alzheimer's disease derives from the cleavage of a membrane protein, named APP, driven by two enzymes, known as beta- and gamma-secretases. The mechanisms regulating this cleavage are not understood. We have developed an experimental system to identify possible extracellular signals able to trigger the cleavage of an APP-Gal4 fusion protein, which is detected by measuring the expression of the CAT gene transcribed under the control of the Gal4 transcription factor, which is released from the membrane upon the cleavage of APP-Gal4. By using this assay, we purified a protein contained in the C6 cell-conditioned medium, which activates the cleavage of APP-Gal4 and which we demonstrated to be PDGF-BB. The APP-Gal4 processing induced by PDGF is dependent on the gamma-secretase activity, being abolished by an inhibitor of this enzyme, and is the consequence of the activation of a pathway downstream of the PDGF-receptor, which includes the non-receptor tyrosine kinase Src and the small G-protein Rac1. These findings are confirmed by the observation that a constitutively active form of Src increases Abeta generation and that, in cells stably expressing APP, the generation of A is strongly decreased by the Src tyrosine kinase inhibitor PP2.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Endopeptidasas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Familia-src Quinasas/metabolismo , Sulfato de Amonio/farmacología , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Becaplermina , Western Blotting , Cloranfenicol O-Acetiltransferasa/metabolismo , Complemento C6/metabolismo , Medios de Cultivo Condicionados/farmacología , Células HeLa , Humanos , Neuronas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-sis , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
15.
J Mol Biol ; 319(5): 1267-77, 2002 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-12079363

RESUMEN

The non-covalent homodimer formed by the C-terminal domains of the IgG1 heavy chains (C(H)3) is the simplest naturally occurring model system for studying immunoglobulin folding and assembly. In the native state, the intrachain disulfide bridge, which connects a three-stranded and a four-stranded beta-sheet is buried in the hydrophobic core of the protein. Here, we show that the disulfide bridge is not required for folding and association, since the reduced C(H)3 domain folds to a dimer with defined secondary and tertiary structure. However, the thermodynamic stability of the reduced C(H)3 dimer is much lower than that of the oxidized state. This allows the formation of disulfide bonds either concomitant with folding (starting from the reduced, denatured state) or after folding (starting from the reduced dimer). The analysis of the two processes revealed that, under all conditions investigated, one of the cysteine residues, Cys 86, reacts preferentially with oxidized glutathione to a mixed disulfide that subsequently interacts with the less-reactive second thiol group of the intra-molecular disulfide bond. For folded C(H)3, the second step in the oxidation process is slow. In contrast, starting from the unfolded and reduced protein, the oxidation reaction is faster. However, the overall folding reaction of C(H)3 during oxidative folding is a slow process. Especially, dimerization is slow, compared to the association starting from the denatured oxidized state. This deceleration may be due to misfolded conformations trapped by the disulfide bridge.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Disulfuros/metabolismo , Regiones Constantes de Inmunoglobulina/metabolismo , Inmunoglobulina G/metabolismo , Cadenas Pesadas de Inmunoglobulina/metabolismo , Pliegue de Proteína , Alquilación , Cromatografía en Gel , Dicroismo Circular , Reactivos de Enlaces Cruzados , Cisteína/química , Cisteína/metabolismo , Dimerización , Disulfuros/química , Regiones Constantes de Inmunoglobulina/química , Inmunoglobulina G/química , Cadenas Pesadas de Inmunoglobulina/química , Cinética , Espectrometría de Masas , Modelos Moleculares , Oxidación-Reducción , Mapeo Peptídico , Desnaturalización Proteica , Renaturación de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ultracentrifugación
16.
EMBO J ; 21(4): 835-44, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11847130

RESUMEN

In human cells, Ero1-Lalpha and -Lbeta (hEROs) regulate oxidative protein folding by selectively oxidizing protein disulfide isomerase. Specific protein--protein interactions are probably crucial for regulating the formation, isomerization and reduction of disulfide bonds in the endoplasmic reticulum (ER). To identify molecules involved in ER redox control, we searched for proteins interacting with Ero1-Lalpha. Here, we characterize a novel ER resident protein (ERp44), which contains a thioredoxin domain with a CRFS motif and is induced during ER stress. ERp44 forms mixed disulfides with both hEROs and cargo folding intermediates. Whilst the interaction with transport-competent Ig-K chains is transient, ERp44 binds more stably with J chains, which are retained in the ER and eventually degraded by proteasomes. ERp44 does not bind a short-lived ribophorin mutant lacking cysteines. Its overexpression alters the equilibrium of the different Ero1-Lalpha redox isoforms, suggesting that ERp44 may be involved in the control of oxidative protein folding.


Asunto(s)
Proteínas Portadoras/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/fisiología , Chaperonas Moleculares , Secuencia de Aminoácidos , Secuencia de Bases , Calsecuestrina/química , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cartilla de ADN , Células HeLa , Humanos , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Tiorredoxinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA