Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mar Drugs ; 19(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356825

RESUMEN

Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of our research to develop potent and more selective anticancer compounds, we synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound 18 (CC50 0.4 ± 0.3 µM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative 29 and hydrazide analog of 2-picoline 37. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.


Asunto(s)
Antineoplásicos/farmacología , Organismos Acuáticos , Guanidinas/farmacología , Tirosina/análogos & derivados , Animales , Antineoplásicos/química , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Guanidinas/química , Humanos , Tirosina/química , Tirosina/farmacología
2.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672408

RESUMEN

Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure-activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.

3.
Eur J Med Chem ; 213: 113200, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524686

RESUMEN

The rise in multidrug-resistant bacteria defines the need for identification of new antibacterial agents that are less prone to resistance acquisition. Compounds that simultaneously inhibit multiple bacterial targets are more likely to suppress the evolution of target-based resistance than monotargeting compounds. The structurally similar ATP binding sites of DNA gyrase and topoisomerase Ⅳ offer an opportunity to accomplish this goal. Here we present the design and structure-activity relationship analysis of balanced, low nanomolar inhibitors of bacterial DNA gyrase and topoisomerase IV that show potent antibacterial activities against the ESKAPE pathogens. For inhibitor 31c, a crystal structure in complex with Staphylococcus aureus DNA gyrase B was obtained that confirms the mode of action of these compounds. The best inhibitor, 31h, does not show any in vitro cytotoxicity and has excellent potency against Gram-positive (MICs: range, 0.0078-0.0625 µg/mL) and Gram-negative pathogens (MICs: range, 1-2 µg/mL). Furthermore, 31h inhibits GyrB mutants that can develop resistance to other drugs. Based on these data, we expect that structural derivatives of 31h will represent a step toward clinically efficacious multitargeting antimicrobials that are not impacted by existing antimicrobial resistance.


Asunto(s)
Adenosina Trifosfato/farmacología , Antibacterianos/farmacología , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Adenosina Trifosfato/síntesis química , Adenosina Trifosfato/química , Antibacterianos/síntesis química , Antibacterianos/química , Cristalografía por Rayos X , Topoisomerasa de ADN IV/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/enzimología , Escherichia coli/patogenicidad , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Relación Estructura-Actividad
4.
ACS Med Chem Lett ; 11(5): 790-797, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435386

RESUMEN

In ϒ-proteobacteria and Actinomycetales, cysteine biosynthetic enzymes are indispensable during persistence and become dispensable during growth or acute infection. The biosynthetic machinery required to convert inorganic sulfur into cysteine is absent in mammals; therefore, it is a suitable drug target. We searched for inhibitors of Salmonella serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of l-cysteine biosynthesis. The virtual screening of three ChemDiv focused libraries containing 91 243 compounds was performed to identify potential SAT inhibitors. Scaffold similarity and the analysis of the overall physicochemical properties allowed the selection of 73 compounds that were purchased and evaluated on the recombinant enzyme. Six compounds displaying an IC50 <100 µM were identified via an indirect assay using Ellman's reagent and then tested on a Gram-negative model organism, with one of them being able to interfere with bacterial growth via SAT inhibition.

5.
Int J Mol Sci ; 20(11)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159170

RESUMEN

The serine protease Caseinolytic protease subunit P (ClpP) plays an important role for protein homeostasis in bacteria and contributes to various developmental processes, as well as virulence. Therefore, ClpP is considered as a potential drug target in Gram-positive and Gram-negative bacteria. In this study, we utilized a biochemical assay to screen several small molecule libraries of approved and investigational drugs for Escherichia coli ClpP inhibitors. The approved drugs bortezomib, cefmetazole, cisplatin, as well as the investigational drug cDPCP, and the protease inhibitor 3,4-dichloroisocoumarin (3,4-DIC) emerged as ClpP inhibitors with IC50 values ranging between 0.04 and 31 µM. Compound profiling of the inhibitors revealed cefmetazole and cisplatin not to inhibit the serine protease bovine α-chymotrypsin, and for cefmetazole no cytotoxicity against three human cell lines was detected. Surface plasmon resonance studies demonstrated all novel ClpP inhibitors to bind covalently to ClpP. Investigation of the potential binding mode for cefmetazole using molecular docking suggested a dual covalent binding to Ser97 and Thr168. While only the antibiotic cefmetazole demonstrated an intrinsic antibacterial effect, cDPCP clearly delayed the bacterial growth recovery time upon chemically induced nitric oxide stress in a ClpP-dependent manner.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Descubrimiento de Drogas , Endopeptidasa Clp/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
6.
Mar Drugs ; 16(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513862

RESUMEN

The first total synthesis of the marine bromotyrosine purpurealidin I (1) using trifluoroacetoxy protection group and its dimethylated analog (29) is reported along with 16 simplified bromotyrosine derivatives lacking the tyramine moiety. Their cytotoxicity was evaluated against the human malignant melanoma cell line (A-375) and normal skin fibroblast cells (Hs27) together with 33 purpurealidin-inspired simplified amides, and the structure⁻activity relationships were investigated. The synthesized simplified analogs without the tyramine part retained the cytotoxic activity. Purpurealidin I (1) showed no selectivity but its simplified pyridin-2-yl derivative (36) had the best improvement in selectivity (Selectivity index 4.1). This shows that the marine bromotyrosines are promising scaffolds for developing cytotoxic agents and the full understanding of the elements of their SAR and improving the selectivity requires further optimization of simplified bromotyrosine derivatives.


Asunto(s)
Antineoplásicos/farmacología , Organismos Acuáticos/química , Desarrollo de Medicamentos , Poríferos/química , Tirosina/análogos & derivados , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos , Humanos , Estructura Molecular , Piridinas/química , Relación Estructura-Actividad , Tirosina/síntesis química , Tirosina/farmacología
7.
Mol Pharm ; 14(1): 135-146, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28043125

RESUMEN

The food and dietary supplements we consume contain a wide variety of plant secondary metabolites and other compounds, which, like drugs, can be absorbed, metabolized, distributed, and excreted from the body. In the intestine, these compounds can interact with transport proteins such as the multidrug resistance associated protein 2 (MRP2, ABCC2) and the breast cancer resistance protein (BCRP, ABCG2) that regulate the absorption of drugs and other compounds. Inhibition of these transporters by dietary components could lead to increased exposure and adverse effects of concomitantly administered drugs. Therefore, we screened a library of 124 natural compounds and their derivatives using the vesicular transport assay to evaluate their inhibitory potential on MRP2 and BCRP. Of the library compounds, 36% were identified as BCRP inhibitors, whereas the number was only 3.2% for MRP2. BCRP inhibitors are described by higher molecular weight, number of rings, aromaticity, and LogD7.4 than noninhibitors. IC50 values were measured for six dual inhibitors, among which three novel inhibitors, gossypin, nordihydroguaiaretic acid, and octyl gallate, were identified. Our results confirm that flavonoids are avid inhibitors of BCRP, and flavones and flavonols appear to be important subclasses of flavonoids for this inhibition. The strong inhibition of BCRP transport by some compounds suggests that their presence at high levels in the diet could cause food-drug interactions, but this seems to be a minor cause of concern for MRP2.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Productos Biológicos/farmacología , Neoplasias de la Mama/dietoterapia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Animales , Transporte Biológico/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Línea Celular , ADN Complementario/metabolismo , Flavonoides/química , Flavonoides/farmacología , Interacciones Alimento-Droga/fisiología , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Humanos , Masoprocol/química , Proteínas de Transporte de Membrana/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Células Sf9
8.
Bioorg Med Chem Lett ; 26(22): 5591-5593, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765506

RESUMEN

A set of crown ethyl acyl derivatives based on 18-crown-6 moiety was synthesized and evaluated for biological activity. In vitro antiproliferative profiling demonstrated significant activities against HBL-100, HeLa, SW1573 and WiDr human cell lines. The most active compound exhibited GI50 values in the range of 3.7-5.6µM. Antimicrobial evaluation showed that three polyaromatic compounds were active against Staphylococcus aureus (MIC90 values from 8.3µM to 50µM), whereas a (decyloxy)benzene substitution exhibited moderate activity against Candida albicans (MIC90 values 36µM). According to SAR evaluation, the size of the crown ether and the acyl side chain had a significant effect on the bioactivity. Aromatic moieties close to the acyl group led to improved bioactivity as exemplified by some of the tested compounds. These results provide further evidence on the potential of crown ethyl structure as a scaffold for developing new biological probes and lead candidates for drug development.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Éteres Corona/química , Éteres Corona/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
9.
N Biotechnol ; 33(3): 399-406, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26902670

RESUMEN

Marine organisms constitute approximately one-half of the total global biodiversity, being rich reservoirs of structurally diverse biofunctional components. The potential of cyanobacteria, micro- and macroalgae as sources of antimicrobial, antitumoral, anti-inflammatory, and anticoagulant compounds has been reported extensively. Nonetheless, biological activities of marine fauna and flora of the Aegean Sea have remained poorly studied when in comparison to other areas of the Mediterranean Sea. In this study, we screened the antimicrobial, antifouling, anti-inflammatory and anticancer potential of in total 98 specimens collected from the Aegean Sea. Ethanol extract of diatom Amphora cf capitellata showed the most promising antimicrobial results against Candida albicans while the extract of diatom Nitzschia communis showed effective results against Gram-positive bacterium, S. aureus. Extracts from the red alga Laurencia papillosa and from three Cystoseira species exhibited selective antiproliferative activity against cancer cell lines and an extract from the brown alga Dilophus fasciola showed the highest anti-inflammatory activity as measured in primary microglial and astrocyte cell cultures as well as by the reduction of proinflammatory cytokines. In summary, our study demonstrates that the Aegean Sea is a rich source of species that possess interesting potential for developing industrial applications.


Asunto(s)
Biotecnología/métodos , Cianobacterias/metabolismo , Microalgas/metabolismo , Océanos y Mares , Algas Marinas/metabolismo , Animales , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Incrustaciones Biológicas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratas Wistar
10.
Pharm Biol ; 54(6): 1108-15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26808592

RESUMEN

CONTEXT: Identification of bioactive components from complex natural product extracts can be a tedious process that aggravates the use of natural products in drug discovery campaigns. OBJECTIVE: This study presents a new approach for screening antimicrobial potential of natural product extracts by employing a bioreporter assay amenable to HPLC-based activity profiling. MATERIALS AND METHODS: A library of 116 crude extracts was prepared from fungal culture filtrates by liquid-liquid extraction with ethyl acetate, lyophilised, and screened against Escherichia coli using TLC bioautography. Active extracts were studied further with a broth microdilution assay, which was, however, too insensitive for identifying the active microfractions after HPLC separation. Therefore, an assay based on bioluminescent E. coli K-12 (pTetLux1) strain was coupled with HPLC micro-fractionation. RESULTS: Preliminary screening yielded six fungal extracts with potential antimicrobial activity. A crude extract from a culture filtrate of the wood-rotting fungus, Pycnoporus cinnabarinus (Jacq.) P. Karst. (Polyporaceae), was selected for evaluating the functionality of the bioreporter assay in HPLC-based activity profiling. In the bioreporter assay, the IC50 value for the crude extract was 0.10 mg/mL. By integrating the bioreporter assay with HPLC micro-fractionation, the antimicrobial activity was linked to LC-UV peak of a compound in the chromatogram of the extract. This compound was isolated and identified as a fungal pigment phlebiarubrone. DISCUSSION AND CONCLUSION: HPLC-based activity profiling using the bioreporter-based approach is a valuable tool for identifying antimicrobial compound(s) from complex crude extracts, and offers improved sensitivity and speed compared with traditional antimicrobial assays, such as the turbidimetric measurement.


Asunto(s)
Antiinfecciosos/farmacología , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Mezclas Complejas/farmacología , Pycnoporus , Antiinfecciosos/aislamiento & purificación , Cromatografía en Capa Delgada , Mezclas Complejas/aislamiento & purificación , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/crecimiento & desarrollo , Microextracción en Fase Líquida , Pruebas de Sensibilidad Microbiana , Pycnoporus/química , Pycnoporus/crecimiento & desarrollo
11.
Arch Pharm (Weinheim) ; 349(2): 137-49, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26709468

RESUMEN

A series of 2-aminobenzothiazole and benzimidazole analogs based on the clathrodin scaffold was synthesized and investigated for their antimicrobial and antiproliferative activities as well as for their effects in hepatitis C virus (HCV) replicon model. Compound 7, derived from 2-aminobenzothiazole, exhibited moderate antimicrobial activity only against the Gram-positive bacterium, Enterococcus faecalis. In the antiviral assay, compounds 4d and 7 were found to suppress the HCV replicon by >70%, but also to exhibit cytotoxicity against the host cells (35 and 44%, respectively). Compounds 4a and 7 demonstrated good activity in the antiproliferative assays on the human melanoma cell line A-375. To assess the selectivity of the effects between cancerous and noncancerous cells, a mouse fibroblast cell line was used. The IC50 values for compound 7 against the melanoma cell line A-375 and the fibroblast cell line BALB/c 3T3 were 16 and 71 µM, respectively, yielding fourfold selectivity toward the cancer cell line. These results suggest that compound 7 should be studied further in order to fully explore its potential for drug development.


Asunto(s)
Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Antivirales/química , Bencimidazoles/química , Benzotiazoles/química , Carbamatos/química , Pirroles/química , Células 3T3 , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Benzotiazoles/síntesis química , Benzotiazoles/farmacología , Carbamatos/síntesis química , Carbamatos/farmacología , Línea Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Replicón , Relación Estructura-Actividad
12.
J Med Chem ; 58(15): 6179-94, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26126187

RESUMEN

Bacterial DNA gyrase is a well-known and validated target in the design of antibacterial drugs. However, inhibitors of its ATP binding subunit, DNA gyrase B (GyrB), have so far not reached clinical use. In the present study, three different series of N-phenyl-4,5-dibromopyrrolamides and N-phenylindolamides were designed and prepared as potential DNA gyrase B inhibitors. The IC50 values of compounds on DNA gyrase from Escherichia coli were in the low micromolar range, with the best compound, (4-(4,5-dibromo-1H-pyrrole-2-carboxamido)benzoyl)glycine (18a), displaying an IC50 of 450 nM. For this compound, a high-resolution crystal structure in complex with E. coli DNA gyrase B was obtained, revealing details of its binding mode within the active site. The binding affinities of three compounds with GyrB were additionally evaluated by surface plasmon resonance, and the results were in good agreement with the determined enzymatic activities. For the most promising compounds, the inhibitory activities against DNA gyrase from Staphylococcus aureus and topoisomerases IV from E. coli and S. aureus were determined. Antibacterial activities of the most potent compounds of each series were evaluated against two Gram-positive and two Gram-negative bacterial strains. The results obtained in this study provide valuable information on the binding mode and structure-activity relationship of N-phenyl-4,5-dibromopyrrolamides and N-phenylindolamides as promising classes of ATP competitive GyrB inhibitors.


Asunto(s)
Adenosina Trifosfato/química , Indoles/química , Indoles/farmacología , Pirroles/química , Pirroles/farmacología , Amidas/química , Cristalografía por Rayos X , Diseño de Fármacos , Indoles/síntesis química , Modelos Moleculares , Pirroles/síntesis química , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
13.
J Med Chem ; 58(14): 5501-21, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26098163

RESUMEN

Bacterial DNA gyrase and topoisomerase IV are essential enzymes that control the topological state of DNA during replication and validated antibacterial drug targets. Starting from a library of marine alkaloid oroidin analogues, we identified low micromolar inhibitors of Escherichia coli DNA gyrase based on the 5,6,7,8-tetrahydroquinazoline and 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole scaffolds. Structure-based optimization of the initial hits resulted in low nanomolar E. coli DNA gyrase inhibitors, some of which exhibited micromolar inhibition of E. coli topoisomerase IV and of Staphylococcus aureus homologues. Some of the compounds possessed modest antibacterial activity against Gram positive bacterial strains, while their evaluation against wild-type, impA and ΔtolC E. coli strains suggests that they are efflux pump substrates and/or do not possess the physicochemical properties necessary for cell wall penetration. Our study provides a rationale for optimization of this class of compounds toward balanced dual DNA gyrase and topoisomerase IV inhibitors with antibacterial activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Girasa de ADN/metabolismo , Diseño de Fármacos , Tiazoles/química , Tiazoles/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Sitios de Unión , Girasa de ADN/química , Topoisomerasa de ADN IV/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Proteica , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Relación Estructura-Actividad
14.
Bioorg Med Chem ; 23(13): 3513-25, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25935289

RESUMEN

ABCC2 is a transporter with key influence on liver and kidney pharmacokinetics. In order to explore the structure-activity relationships of compounds that modulate ABCC2, and by doing so gain insights into drug-drug interactions, we screened a library of 432 compounds for modulators of radiolabeled ß-estradiol 17-(ß-d-glucuronide) (EG) and fluorescent 5(6)-carboxy-2',7'-dichlorofluorescein transport (CDCF) in membrane vesicles. Following the primary screen at 80µM, dose-response curves were used to investigate in detail 86 compounds, identifying 16 low µM inhibitors and providing data about the structure-activity relationships in four series containing 19, 24, 10, and eight analogues. Measurements with the CDCF probe were consistently more robust than for the EG probe. Only one compound was clearly probe-selective with a 50-fold difference in the IC50s obtained by the two assays. We built 24 classification models using the SVM and fused-XY Kohonen methods, revealing molecular descriptors related to number of rings, solubility and lipophilicity as important to distinguish inhibitors from inactive compounds. This study is to the best of our knowledge the first to provide details about structure-activity relationships in ABCC2 modulation.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/agonistas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Vesículas Transportadoras/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/metabolismo , Fluoresceínas/metabolismo , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Sondas Moleculares/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Spodoptera , Relación Estructura-Actividad , Vesículas Transportadoras/metabolismo
15.
Planta Med ; 80(14): 1234-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25203732

RESUMEN

Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.


Asunto(s)
Organismos Acuáticos/química , Bacterias/química , Productos Biológicos/farmacología , Hongos/química , Invertebrados/química , Microalgas/química , Algas Marinas/química , Animales , Biodiversidad , Cianobacterias/química , Peces , Humanos
16.
PLoS One ; 9(7): e102696, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25032708

RESUMEN

Betulin (lup-20(29)-ene-3ß, 28-diol) is a naturally occurring triterpene, which is found in substantial amounts from the outer bark of birch trees. A library of 51 structurally diverse semisynthetic betulin derivatives was screened against five bacterial strains, Enterobacter aerogenes, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus and a fungal strain Candida albicans, using broth microdilution assays. Primary antimicrobial screening at 50 µM concentration led to the identification of five compounds showing antimicrobial properties (inhibition of growth by >70% against one or more microbial strains). According to the dose-response results, 28-O-(N-acetylanthraniloyl)betulin (compound 5) was the most active, showing MIC90 of 6.25 µM against two Gram-positive bacteria, E. faecalis and S. aureus. However, the activity of this compound was affected by albumin binding, which was demonstrated by the loss of activity in a host-pathogen co-culture assay as well as in the antibacterial assay in the presence of increased concentration of albumin. Furthermore, the effects on mammalian cells were evaluated by cytotoxicity assessment on hepatocyte cell culture after 24 h exposure to the compounds. Betulinic aldehyde (18), betulin-28-oxime (31) and hetero cycloadduct with acetoxy groups at carbon atoms 3 and 28 and ethyl substituent at the triazolo ring (43) displayed cytotoxicity towards hepatocytes, with IC50 values of 47, 25 and 16 µM, respectively. The IC50 value for 28-O-(N-acetylanthraniloyl)betulin (5) was 56 µM. The current study presents an insight into using betulin scaffold for developing derivatives with antibacterial potential, and furthermore the necessity of in-depth analysis of found actives through selectivity profiling and follow-up studies including in silico ADMET predictions.


Asunto(s)
Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Triterpenos/farmacología , Albúminas/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Triterpenos/efectos adversos , Triterpenos/química
17.
J Biol Chem ; 287(9): 6743-52, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22235112

RESUMEN

Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABA(A) receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABA(A) receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABA(A) receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3ß kinase activity.


Asunto(s)
Degeneración Nerviosa/metabolismo , Receptores de GABA-A/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular Tumoral , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citoesqueleto/metabolismo , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Toxinas Marinas , Ratones , Peptidilprolil Isomerasa de Interacción con NIMA , Naftoquinonas/farmacología , Neuroblastoma , Oxazoles/farmacología , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/metabolismo , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Purinas/farmacología , Ratas , Roscovitina
18.
Nat Prod Commun ; 6(11): 1573-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22224262

RESUMEN

Four triterpenoids isolated from the leaves of Fadogia tetraquetra var. tetraquetra, 3beta-hydroxy-11alpha, 12alpha-epoxyoleanan-28,13beta-olide (1), 3beta-hydroxyurs-11-en-28,13beta-olide (2), oleanolic acid (3), and ursolic acid (4), were evaluated for their antiviral and antibacterial properties. Compound 4 showed potent activity against the Semliki Forest virus with an IC50 of 14.7 microM, but was also found to be significantly cytotoxic (68% reduction in cell viability after 24 hours exposure at 50 microM) towards baby hamster kidney (BHK21) host cells. A viability assay on the mammalian human hepatocellular carcinoma (Huh-7) cell line showed no significant effects on intracellular ATP content after 48 hours exposure to compounds 1-4 at this concentration. Compound 4 also inhibited Staphylococcus aureus (MIC 12.5 microM), but was inactive against Enterobacter aerogenes, Escherichia coli, and Pseudomonas aeruginosa. Compounds 1-3 were inactive against all tested bacterial strains at 50 microM concentration.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antivirales/aislamiento & purificación , Rubiaceae/química , Triterpenos/aislamiento & purificación , Animales , Antibacterianos/química , Antivirales/química , Línea Celular/efectos de los fármacos , Cricetinae , Humanos , Lactonas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ácido Oleanólico/química , Hojas de la Planta/química , Triterpenos/química , Ácido Ursólico
19.
Transgenic Res ; 17(5): 793-803, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18231872

RESUMEN

Genetic modification using gene transfer (GM) is still controversial when applied to plant breeding at least in Europe. One major concern is how GM affects other genes and thus the metabolism of the plant. In this study, 225 genetically modified lines of the ornamental plant Gerbera hybrida and 42 non-GM gerbera varieties were used to investigate changes in secondary metabolism. The cytotoxicity of GM and non-GM gerbera extracts was evaluated on human cell lines derived from lung, liver, and intestinal tissues. The results indicate that the safety profile for GM gerbera lines is similar to the viability pattern for non-GM varieties-none of the extracts were toxic. In addition, metabolic fingerprints of gerbera extracts were identified using thin-layer chromatography and analysed by principal component analysis (PCA), the nearest neighbour classifier, and Fligner-Killeen test. No new compounds unique to GM lines were observed. With PCA, no separation between GM gerbera lines and varieties could be demonstrated. In the nearest neighbour classifier, 54% of the samples found the expected neighbour based on the gene constructs used for transformation. With Fligner-Killeen test, we studied if the amounts of compounds vary more in GM gerberas than in varieties. In most cases, there were no statistically significant differences between the varieties and GM lines or there was more variation among the non-GM varieties than in the GM lines. The variance of a single compound was significantly larger in transgenic gerbera lines than in varieties and of three compounds in non-GM varieties.


Asunto(s)
Asteraceae/genética , Extractos Vegetales/farmacología , Plantas Modificadas Genéticamente/genética , Asteraceae/química , Asteraceae/metabolismo , Células CACO-2 , Cromatografía en Capa Delgada , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/metabolismo
20.
Anal Biochem ; 362(2): 221-8, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17266913

RESUMEN

In vitro cell viability assays have a central role in predictive toxicology, both in assessing acute toxicity of chemicals and as a source of experimental data for in silico methods. However, the quality of in vitro toxicity databanks fluctuates dramatically because information they contain is obtained under varying conditions and in different laboratories. The aim of this study was to identify the factors responsible for these deviations and thus the quality of the data extracted for predictive toxicology. Three cell viability assays measuring LDH leakage, WST-1 reduction, and intracellular ATP were compared in an automated environment using four mammalian cell lines: Caco-2, Calu-3, Huh-7, and BHK. Using four standard compounds--polymyxin B, gramicidin, 5-fluorouracil, and camptothecin--a significant lack of sensitivity in LDH assay compared with the other assays was observed. Because the viability IC(50) values for the standards were similar among the cell lines, the biochemical characteristics of different cell lines seem to play only a minor role, with an exception being the hepatocellular Huh-7 cell line. Toxicity assessment of new 1,2,4-triazoles revealed significant differences in their toxic potential, and the results indicate the same sensitivity profile among the assays as observed with the standard compounds. Overall, it can be argued that the assay selection is the most important factor governing the uniform quality of the data obtained from in vitro cell viability assays.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Xenobióticos/química , Animales , Células CACO-2 , Camptotecina/farmacología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fluorouracilo/farmacología , Gramicidina/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Polimixina B/farmacología , Reproducibilidad de los Resultados , Triazoles/química , Triazoles/farmacología , Xenobióticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA