Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytother Res ; 38(5): 2154-2164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38391003

RESUMEN

Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.


Asunto(s)
Proantocianidinas , Triglicéridos , Proantocianidinas/farmacología , Humanos , Triglicéridos/sangre , Lípidos/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Metabolismo de los Lípidos/efectos de los fármacos , LDL-Colesterol/sangre , HDL-Colesterol/sangre , Apolipoproteína A-I/sangre , Colesterol/sangre , Antioxidantes/farmacología
2.
Aging (Albany NY) ; 15(22): 13384-13410, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38015723

RESUMEN

A ketogenic diet (KD) and ß-hydroxybutyrate (ßOHB) have been widely reported as effective therapies for metabolic diseases. ß-Hydroxybutyrate dehydrogenase 1 (BDH1) is the rate-limiting enzyme in ketone metabolism. In this study, we examined the BDH1-mediated ßOHB metabolic pathway in the pathogenesis of diabetic kidney disease (DKD). We found that BDH1 is downregulated in the kidneys in DKD mouse models, patients with diabetes, and high glucose- or palmitic acid-induced human renal tubular epithelial (HK-2) cells. BDH1 overexpression or ßOHB treatment protects HK-2 cells from glucotoxicity and lipotoxicity by inhibiting reactive oxygen species overproduction. Mechanistically, BDH1-mediated ßOHB metabolism activates NRF2 by enhancing the metabolic flux of ßOHB-acetoacetate-succinate-fumarate. Moreover, in vivo studies showed that adeno-associated virus 9-mediated BDH1 renal expression successfully reverses fibrosis, inflammation, and apoptosis in the kidneys of C57 BKS db/db mice. Either ßOHB supplementation or KD feeding could elevate the renal expression of BDH1 and reverse the progression of DKD. Our results revealed a BDH1-mediated molecular mechanism in the pathogenesis of DKD and identified BDH1 as a potential therapeutic target for DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Humanos , Ratones , Ácido 3-Hidroxibutírico/farmacología , Antioxidantes/uso terapéutico , Nefropatías Diabéticas/metabolismo , Riñón/patología , Factor 2 Relacionado con NF-E2/genética , Hidroxibutirato Deshidrogenasa/metabolismo
3.
Cell Death Discov ; 8(1): 49, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115498

RESUMEN

In 2020, a group of experts officially suggested metabolic dysfunction associated with fatty liver disease "MAFLD" as a more appropriate overarching term than NAFLD, indicating the key role of metabolism in fatty liver disease. Bdh1, as the rate-limiting enzyme of ketone metabolism, acts as an important metabolic regulator in liver. However, the role of Bdh1 in MAFLD is unclear. In this study, we used the transgenic db/db mice as a MAFLD mouse model and observed the downregulated expression of Bdh1 in fatty liver. In addition, expression of Bdh1 was also reduced by palmitic acid (PA) treatment in LO2 cells. Bdh1 knockdown led to ROS overproduction and ROS-induced inflammation and apoptosis in LO2 cells, while Bdh1 overexpression protected LO2 cells from lipotoxicity by inhibiting ROS overproduction. Mechanistically, Bdh1-mediated ßOHB metabolism inhibits ROS overproduction by activation of Nrf2 through enhancement of metabolic flux composed of ßOHB-AcAc-succinate-fumarate. Notably, adeno-associated virus (AAV)-mediated Bdh1 overexpression successfully reversed the hepatic function indexes, fibrosis, inflammation, and apoptosis in fatty livers from db/db mice. In conclusion, our study revealed a Bdh1-mediated molecular mechanism in pathogenesis of metabolic dysfunction related liver disease and identified Bdh1 as a novel potential therapeutic target for MAFLD.

4.
Cell Mol Life Sci ; 78(19-20): 6557-6583, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34459951

RESUMEN

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.


Asunto(s)
ADN/genética , Animales , Replicación del ADN/genética , Diseño de Fármacos , Epigénesis Genética/genética , G-Cuádruplex , Humanos , Telómero/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA