Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytomedicine ; 131: 155775, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838401

RESUMEN

BACKGROUND: The cyclin-dependent kinase 4 (CDK4) interacts with its canonical and non-canonical substrates modulating the cell cycle in tumor cells. However, the potential substrates and the beyond-cell-cycle-regulated functions of CDK4 in colon cancer (CC) are still unknown. Hernandezine (HER) is previously verified to induce G0/G1 phase arrest and autophagic cell death in human cancer cells, which implies that HER might target G0/G1 phase-related proteins, including CDK4. PURPOSE: The present study tried to investigate the glycolytic metabolism and oxidative stress functions of CDK4 in colon cancer. Furthermore, the inhibitory effects and potential binding sites of HER on CDK4, as well as its anti-tumor activity were investigated in CC cells. METHODS: The mass spectrometry assay was performed to identify potential endogenous substrates of CDK4 and the correlation between glycolytic metabolic rate and CDK4 level in COAD patient tissues. Meanwhile, after inhibiting the activity or the expression of CDK4, the binding capacity of CDK4 to PKM2 and NRF2 and the latter two protein distributions in cytoplasm and nucleus were detected in CC cells. In vitro, the regulatory effects of the CDK4-PKM2-NRF2 axis on glycolysis and oxidative stress were performed by ECAR, OCR, and ROS assay. The inhibitory effect of HER on CDK4 activity was explored in CC cells and the potential binding sites were predicted and testified in vitro. Furthermore, tumor growth inhibition of HER by suppressing the CDK4-PKM2-NRF2 axis was also investigated in vitro and in vivo. RESULTS: PKM2 and NRF2 were identified as endogenous substrates of CDK4 and, high-expressed CDK4 was associated with low-level glycolysis in COAD. In vitro, inactivated CDK4 facilitated CDK4-PKM2-NRF2 complex formation which resulted in 1) inhibited PKM2 activity and retarded the glycolytic rate; 2) cytoplasm-detained NRF2 failed to transcript anti-oxidative gene expressions and induced oxidant stress. Additionally, as a CDK4 inhibitor, HER developed triple anti-tumor effects including induced G0/G1 phase arrest, suppressed glycolysis, and disrupted the anti-oxidative capacity of CC cells. CONCLUSION: The results first time revealed that CDK4 modulated glycolytic and anti-oxidative capacity of CC cells via bound to its endogenous substrates, PKM2 and NRF2. Additionally, 140Asp145Asn amino acid sites of CDK4 were potential targets of HER. HER exerts anti-tumor activity by inhibited the activity of CDK4, promoted the CDK4-PKM2-NRF2 complex formation in the CC cells.


Asunto(s)
Proteínas Portadoras , Neoplasias del Colon , Quinasa 4 Dependiente de la Ciclina , Proteínas de la Membrana , Factor 2 Relacionado con NF-E2 , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Animales , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Glucólisis/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Femenino
2.
Phytomedicine ; 127: 155440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452691

RESUMEN

BACKGROUND: The high metastasis and mortality rates of head and neck squamous cell carcinoma (HNSCC) urgently require new treatment targets and drugs. A steroidal component of ChanSu, telocinobufagin (TBG), was verified to have anti-cancer effects in various tumors, but its activity and mechanism in anti-HNSCC were still unknown. PURPOSE: This study tried to demonstrate the anti-tumor effect of TBG on HNSCC and verify its potential mechanism. METHODS: The effect of TBG on cell proliferation and metastasis were performed and the TBG changed genes were detected by RNA-seq analysis in HNSCC cells. The GSEA and PPI analysis were used to identify the pathways targeted for TBG-regulated genes. Meanwhile, the mechanism of TBG on anti-proliferative and anti-metastasis were investigated in vitro and in vivo. RESULTS: The in vitro and in vivo experiments confirmed that TBG has favorable anti-tumor effects by induced G2/M phase arrest and suppressed metastasis in HNSCC cells. Further RNA-seq analysis demonstrated the genes regulated by TBG were enriched at the G2/M checkpoint and PLK1 signaling pathway. Then, the bioinformatic analysis of clinical data found that high expressed PLK1 were closely associated with poor overall survival in HNSCC patients. Furthermore, PLK1 directly and indirectly modulated G2/M phase and metastasis (by regulated CTCF) in HNSCC cells, simultaneously. TBG significantly inhibited the protein levels of PLK1 in both phosphorylated and non-phosphorylated forms and then, in one way, inactivated PLK1 failed to activate G2/M phase-related proteins (including CDK1, CDC25c, and cyclin B1). In another way, be inhibited PLK1 unable promote the nuclear translocation of CTCF and thus suppressed HNSC cell metastasis. In contrast, the anti-proliferative and anti-metastasis effects of TBG on HNSCC cell were vanished when cells high-expressed PLK1. CONCLUSION: The present study verified that PLK1 mediated TBG induced anti-tumor effect by modulated G2/M phase and metastasis in HNSCC cells.


Asunto(s)
Bufanólidos , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral
3.
J Adv Res ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37479180

RESUMEN

INTRODUCTION: Although colon (COAD) and rectal adenocarcinoma (READ) combined to refer to colorectal cancer (CRC), substantial clinical evidence urged that CRC should be treated as two different cancers due to compared with READ, COAD showed higher morbidity and worse 5-year survival. OBJECTIVES: This study has tried to screen for the crucial gene that caused the worse prognosis and investigate its mechanism for mediating tumor growth and metastases in COAD. Meanwhile, the potential anti-COAD compound implicated in this mechanism was identified and testified from 1,855 food-borne chemical kits. This study aims to bring a new perspective to the development of new anti-COAD drugs and personalized medicine for patients with COAD. METHODS AND RESULTS: The survival-related hub genes in COAD and READ were screened out from The Cancer Genome Atlas (TCGA) database and the results showed that HIGD1A, lower expressed in COAD than in READ, was associated with poor prognosis in COAD patients, but not in READ. Over-expressed HIGD1A suppressed CRC cell proliferation, invasion, and migration in vitro and in vivo. Meanwhile, the different expressed microRNA profiles between COAD and READ showed that miR-501-3p was highly expressed in COAD and inhibited HIGD1A expression by targeting 3'UTR of HIGD1A. MiR-501-3p mimics promoted cell proliferation and metastasis in CRC cells. In addition, Procyanidin C1 (PCC1), a kind of natural polyphenol has been verified as a potential miR-501-3p inhibitor. In vitro and in vivo, PCC1 promoted HIGD1A expression by suppressing miR-501-3p and resulted in inhibited tumor growth and metastasis. CONCLUSION: The present study verified that miR-501-3p/HIGD1A axis mediated tumor growth and metastasis in COAD. PCC1, a flavonoid that riched in food exerts anti-COAD effects by inhibiting miR-501-3p and results in the latter losing the ability to suppress HIGD1A expression. Subsequently, unfettered HIGD1A inhibited tumor growth and metastasis in COAD.

4.
J Ethnopharmacol ; 303: 116031, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503032

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shen-Qi-Jiang-Tang granule (SQJTG), a classic traditional Chinese medicine (TCM) prescription, has been widely used in clinical for diabetes, especially type Ⅱ diabetes. Previous anti-diabetic studies stumbled across that SQJTG has a potential kidney protective effect on diabetic nephropathy (DN). However, the protective mechanism of SQJTG on DN still needs to be explored. AIM OF THE STUDY: The purpose of the present study was to explore the therapeutic effect of SQJTG on DN through both bioinformatics analysis and in vivo experiments. METHODS AND MATERIALS: The TCMIP database was used for screening potential compounds and targets of SQJTG, and the GeneCards, OMIM, DrugBank, and TTD databases were used for collecting DN-related genes. Then protein-protein interaction analysis for the common targets of SQJTG and DN was performed by the STRING database. Meanwhile, KEGG and GO were carried out using the Metascape and DAVID databases. In vivo experiments, to testify the potential kidney protective effects of SQJTG, STZ-induced DN mice with different dosages of SQJTG treatment were collected and the renal tissues were detected by H&E, PAS, Masson and TUNEL staining. Immunohistochemistry and immunoblotting were used to assess the proteins' expressions. Flow cytometry and ELISA assay were used to detect the levels of pro-inflammatory cytokines. RESULTS: Among the 338 compounds ascertained by SQJTG, there were 789 related targets as well. Moreover, 1,221 DN-related targets were predicted and 20 core targets were screened by the PPI analyses. According to GO and KEGG pathway analysis, SQJTG may affect DN via the TNF pathway. For the in vivo experiments, renal histomorphological examinations demonstrated that SQJTG treatment significantly ameliorated STZ-induced kidney damage and had a dosage dependence. Meanwhile, mice with DN were found to have dramatic increases in IL-1, TNF-α, IL-6, and IL-12, but markedly decreased after administration of SQJTG. In addition, the protein levels of TNF signaling molecules, like p-P65, p-JNK, and p-p38, showed significantly elevated in kidney tissues of DN mice and attenuated after SQJTG treatment. CONCLUSIONS: SQJTG exerts a kidney protective effect in DN mice via modulating TNF signaling pathways, and it has promising applications for the treatment of DN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/patología , Diabetes Mellitus Experimental/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6127-6136, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36471937

RESUMEN

To investigate the therapeutic effect of Jingfang Granules on carbon tetrachloride(CCl_4)-induced liver fibrosis in mice and its mechanism. Forty-nine 8-week-old male C57 BL/6 J mice were randomly divided into a blank group, a CCl_4 group, a silybin group(positive control, 100 mg·kg~(-1))+CCl_4, a Jingfang high-dose(16 g·kg~(-1)) group, a Jingfang high-dose(16 g·kg~(-1))+CCl_4 group, a Jingfang medium-dose(8 g·kg~(-1))+CCl_4 group, and a Jingfang low-dose(4 g·kg~(-1))+CCl_4 group, with 7 mice in each group. The mice in the blank group and Jingfang high-dose group were intraperitoneally injected olive oil solution, and mice in other groups were intraperitoneally injected with 10% CCl_4 olive oil solution(5 mL·kg~(-1)) to induce liver fibrosis, twice a week with an interval of 3 d, for 8 weeks. At the same time, except for the blank group and CCl_4 group, which were given deionized water, the mice in other groups were given the corresponding dose of drugs by gavage once daily for 8 weeks with the gavage volume of 10 mL·kg~(-1). All mice were fasted and freely drank for 12 h after the last administration, and then the eyeballs were removed for blood collection. The liver and spleen were collected, and the organ index was calculated. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total bile acid(TBA), and triglyceride(TG) in the serum of mice were detected by an automated analyzer. Tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) and interleukin-1ß(IL-1ß) levels were detected by enzyme-linked immunosorbent assay(ELISA). Kits were used to detect the contents of superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the liver tissue. Pathological changes in the liver tissue were observed by hematoxylin-eosin(HE), Masson, and Sirius red staining. Western blot was used to detect protein expressions of transforming growth factor-ß(TGF-ß), α-smooth muscle actin(α-SMA) and Smad4 in the liver tissue. The results indicated that Jingfang Granules significantly reduced the organ index, levels of ALT, AST, TBA,TG, TNF-α, IL-6, and IL-1ß in the serum, and the content of MDA in the liver tissue of mice with CCl_4-induced liver fibrosis. Jingfang Granules also significantly increased the content of SOD and GSH in the liver tissue. Meanwhile, Jingfang Granules down-regulated the protein levels of TGF-ß, α-SMA, and Smad4. Furthermore, Jingfang Granules had no significant effect on the liver tissue morphology and the above indexes in the normal mice. In conclusion, Jingfang Granules has obvious therapeutic effect on CCl_4-induced liver fibrosis, and its mechanism may be related to reducing the expression of pro-inflammatory factors, anti-oxidation, and regulating TGF-ß/Smad4 signaling pathway.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Ratones , Masculino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/uso terapéutico , Tetracloruro de Carbono/efectos adversos , Tetracloruro de Carbono/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
BMC Cardiovasc Disord ; 20(1): 328, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640988

RESUMEN

BACKGROUND: As an inodilator, milrinone is commonly used for patients who undergo coronary artery bypass graft (CABG) surgery because of its effectiveness in decreasing the cardiac index and mitral regurgitation. The aim of this study was to perform a systematic review and meta-analysis of existing studies from the past 20 years to evaluate the impact of milrinone on mortality in patients who undergo CABG surgery. METHODS: We performed a systematic literature search on the application of milrinone in patients who underwent CABG surgery in studies published between 1997 and 2017 in BioMed Central, PubMed, EMBASE, and the Cochrane Central Register. The included studies evaluated milrinone groups compared to groups receiving either placebo or standard treatment and further compared the systemic administration. RESULTS: The network meta-analysis included 723 patients from 16 randomized clinical trials. Overall, there was no significant difference in mortality between the milrinone group and the placebo/standard care group when patients underwent CABG surgery. In addition, 9 trials (with 440 randomized patients), 4 trials (with 212 randomized patients), and 10 trials (with 470 randomized patients) reported that the occurrence of myocardial infarction (MI), myocardial ischemia, and arrhythmia was lower in the milrinone group than in the placebo/standard care group. Between the milrinone treatment and placebo/standard care groups, the occurrence of myocardial infarction, myocardial ischemia, and arrhythmia was significantly different. However, the occurrence of stroke and renal failure, the duration of inotropic support (h), the need for an intra-aortic balloon pump (IABP), and mechanical ventilation (h) between these two groups showed no differences. CONCLUSIONS: Based on the current results, compared with placebo, milrinone might be unable to decrease mortality in adult CABG surgical patients but can significantly ameliorate the occurrence of MI, myocardial ischemia, and arrhythmia. These results provide evidence for the further clinical application of milrinone and of therapeutic strategies for CABG surgery. However, along with milrinone application in clinical use, sufficient data from randomized clinical trials need to be collected, and the potential benefits and adverse effects should be analyzed and reevaluated.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Puente de Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/cirugía , Milrinona/uso terapéutico , Complicaciones Posoperatorias/prevención & control , Adulto , Anciano , Fármacos Cardiovasculares/efectos adversos , Puente de Arteria Coronaria/efectos adversos , Enfermedad de la Arteria Coronaria/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Milrinona/efectos adversos , Complicaciones Posoperatorias/mortalidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento
7.
Life Sci ; 242: 117205, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874165

RESUMEN

AIMS: TGF-ß-induced alveolar epithelial cells apoptosis were involved in idiopathic pulmonary fibrosis (IPF). This study aimed to explore potential targets and mechanisms of IPF. MAIN METHODS: mRNA and microRNA arrays were used to analyze differentially expressed genes and miRNAs. Several essential targets of TGF-ß-SMADs and TGF-ß-PI3K-AKT pathways were detected. KEY FINDINGS: miR-31 and miR-184 expression levels were positively correlated with smad6 and smad2/akt expression levels in IPF patients. TGF-ß could induce miR-31 and suppress miR-184 levels in A549 cells. miR-31 was confirmed to bind to the smad6-3'UTR and functionally suppress its expression. Down-regulated SMAD6 enhanced SMAD2/SMAD4 dimer formation and translocation due to its failure to prevent SMAD2 phosphorylation. In contrast, anti-fibrotic functions of miR-184 were abolished due to TGF-ß directly suppressing miR-184 levels in A549 cells. When A549 was stimulated by TGF-ß combined with or without miR-31 inhibitor/miR-184 mimic, it was showed that depleted miR-31 and/or increased miR-184 significantly ameliorated TGF-ß-induced viability of A549 cells, as well as inhibited the expression of profibrotic factors, MMP7 and RUNX2. SIGNIFICANCE: Inhibiting miR-31 and/or promoting miR-184 protect against TGF-ß-induced fibrogenesis by respectively repressing the TGF-ß-SMAD2 and TGF-ß-PI3K-AKT signaling pathways, implying that miR-31/184 are potential targets and suggesting a new management strategy for IPF.


Asunto(s)
Células A549/metabolismo , Apoptosis/efectos de los fármacos , Fibrosis Pulmonar Idiopática/metabolismo , MicroARNs/fisiología , Factor de Crecimiento Transformador beta/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , MicroARNs/metabolismo , FN-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Proteína Smad2/metabolismo
8.
Front Pharmacol ; 10: 1218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680982

RESUMEN

Our previous studies have investigated the systematic pharmacokinetic characteristics, biological activities, and toxicity of arctigenin. In this research, the potential toxicities of arctigenin in beagle dogs were investigated via repeated 28-day subcutaneous injections. Beagle dogs were randomly divided into control, vehicle [polyethylene glycol (PEG)], and arctigenin 6, 20, 60 mg/kg treated groups. The whole experimental period lasted 77 days, including adaptive period (35 days), drug exposure period (animals were treated with saline, PEG, or arctigenin for 28 consecutive days), and recovery period (14 days). Arctigenin injection (60 mg/kg) affected the lymphatic hematopoietic, digestive, urinary, and cardiovascular systems, and all the impact on these tissues resulted in death in five dogs (three female and two male dogs); 20 mg/kg arctigenin injection resulted in toxic reactions of the lymphatic hematopoietic and digestive systems; and 6 mg/kg arctigenin and PEG injection did not lead to significant toxic reactions. Meanwhile, there were no sexual differences of drug exposure and accumulation when dogs underwent different dosages. As stated previously, the toxic target organs of arctigenin administration include lymphatic hematopoietic, digestive (liver and gallbladder), urinary (kidney), and cardiovascular (heart) systems, and the no observed adverse effect level (NOAEL) of arctigenin is less than 6 mg/kg.

9.
Front Pharmacol ; 9: 268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636686

RESUMEN

Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA