Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep ; 40(3): 111085, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858542

RESUMEN

Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures.


Asunto(s)
Esclerosis Tuberosa , Animales , Humanos , Ratones , Células Piramidales , Convulsiones , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
2.
Autophagy ; 15(1): 113-130, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160596

RESUMEN

Heterozygous mutations in GBA, the gene encoding the lysosomal enzyme glucosylceramidase beta/ß-glucocerebrosidase, comprise the most common genetic risk factor for Parkinson disease (PD), but the mechanisms underlying this association remain unclear. Here, we show that in GbaL444P/WT knockin mice, the L444P heterozygous Gba mutation triggers mitochondrial dysfunction by inhibiting autophagy and mitochondrial priming, two steps critical for the selective removal of dysfunctional mitochondria by autophagy, a process known as mitophagy. In SHSY-5Y neuroblastoma cells, the overexpression of L444P GBA impeded mitochondrial priming and autophagy induction when endogenous lysosomal GBA activity remained intact. By contrast, genetic depletion of GBA inhibited lysosomal clearance of autophagic cargo. The link between heterozygous GBA mutations and impaired mitophagy was corroborated in postmortem brain tissue from PD patients carrying heterozygous GBA mutations, where we found increased mitochondrial content, mitochondria oxidative stress and impaired autophagy. Our findings thus suggest a mechanistic basis for mitochondrial dysfunction associated with GBA heterozygous mutations. Abbreviations: AMBRA1: autophagy/beclin 1 regulator 1; BECN1: beclin 1, autophagy related; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chloroyphenylhydrazone; CYCS: cytochrome c, somatic; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; GBA: glucosylceramidase beta; GBA-PD: Parkinson disease with heterozygous GBA mutations; GD: Gaucher disease; GFP: green fluorescent protein; LC3B: microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated form of microtubule-associated protein 1 light chain 3 beta; MitoGreen: MitoTracker Green; MitoRed: MitoTracker Red; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH transcription factor; NBR1: NBR1, autophagy cargo receptor; Non-GBA-PD: Parkinson disease without GBA mutations; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; ROS: reactive oxygen species; SNCA: synuclein alpha; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; VDAC1/Porin: voltage dependent anion channel 1; WT: wild type.


Asunto(s)
Glucosilceramidasa/genética , Mitocondrias/metabolismo , Mitofagia/fisiología , Enfermedad de Parkinson/genética , Animales , Línea Celular Tumoral , Expresión Génica , Glucosilceramidasa/metabolismo , Giro del Cíngulo/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Mutación , Enfermedad de Parkinson/metabolismo , Proto-Oncogenes Mas , Especies Reactivas de Oxígeno/metabolismo
3.
Neuron ; 83(5): 1131-43, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25155956

RESUMEN

Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR.


Asunto(s)
Trastorno Autístico/patología , Autofagia/fisiología , Espinas Dendríticas/genética , Neuronas/patología , Sinapsis/patología , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Factores de Edad , Animales , Trastorno Autístico/genética , Autofagia/efectos de los fármacos , Niño , Preescolar , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Femenino , Humanos , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Sirolimus/farmacología , Sinapsis/efectos de los fármacos , Lóbulo Temporal/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Adulto Joven
4.
Nat Neurosci ; 13(5): 567-76, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20383138

RESUMEN

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Alterations in macroautophagy, the main process responsible for bulk autophagic degradation, have been proposed to contribute to pathogenesis in Huntington's disease (HD), a genetic neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin protein. However, the precise mechanism behind macroautophagy malfunction in HD is poorly understood. In this work, using cellular and mouse models of HD and cells from humans with HD, we have identified a primary defect in the ability of autophagic vacuoles to recognize cytosolic cargo in HD cells. Autophagic vacuoles form at normal or even enhanced rates in HD cells and are adequately eliminated by lysosomes, but they fail to efficiently trap cytosolic cargo in their lumen. We propose that inefficient engulfment of cytosolic components by autophagosomes is responsible for their slower turnover, functional decay and accumulation inside HD cells.


Asunto(s)
Autofagia/fisiología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Animales , Apoptosis/genética , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Enfermedad de Huntington/genética , Inmunosupresores/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Péptidos/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Suero/metabolismo , Sirolimus/farmacología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Fracciones Subcelulares/ultraestructura , Tapsigargina/farmacología , Factores de Tiempo , Alcaloides de la Vinca/metabolismo
5.
J Biol Chem ; 285(14): 10527-37, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20110364

RESUMEN

The accumulation of the intermediate filament protein, glial fibrillary acidic protein (GFAP), in astrocytes of Alexander disease (AxD) impairs proteasome function in astrocytes. We have explored the molecular mechanism that underlies the proteasome inhibition. We find that both assembled and unassembled wild type (wt) and R239C mutant GFAP protein interacts with the 20 S proteasome complex and that the R239C AxD mutation does not interfere with this interaction. However, the R239C GFAP accumulates to higher levels and forms more protein aggregates than wt protein. These aggregates bind components of the ubiquitin-proteasome system and, thus, may deplete the cytosolic stores of these proteins. We also find that the R239C GFAP has a greater inhibitory effect on proteasome system than wt GFAP. Using a ubiquitin-independent degradation assay in vitro, we observed that the proteasome cannot efficiently degrade unassembled R239C GFAP, and the interaction of R239C GFAP with proteasomes actually inhibits proteasomal protease activity. The small heat shock protein, alphaB-crystallin, which accumulates massively in AxD astrocytes, reverses the inhibitory effects of R239C GFAP on proteasome activity and promotes degradation of the mutant GFAP, apparently by shifting the size of the mutant protein from larger oligomers to smaller oligomers and monomers. These observations suggest that oligomeric forms of GFAP are particularly effective at inhibiting proteasome activity.


Asunto(s)
Enfermedad de Alexander/metabolismo , Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Cadena B de alfa-Cristalina/metabolismo , Enfermedad de Alexander/patología , Astrocitos/citología , Western Blotting , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/genética , Glioma/metabolismo , Glioma/patología , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mutación/genética , Ubiquitina/metabolismo
6.
Hum Mol Genet ; 17(11): 1540-55, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18276609

RESUMEN

Glial fibrillary acidic protein (GFAP) is the principle intermediate filament (IF) protein in astrocytes. Mutations in the GFAP gene lead to Alexander disease (AxD), a rare, fatal neurological disorder characterized by the presence of abnormal astrocytes that contain GFAP protein aggregates, termed Rosenthal fibers (RFs), and the loss of myelin. All GFAP mutations cause the same histopathological defect, i.e. RFs, though little is known how the mutations affect protein accumulation as well as astrocyte function. In this study, we found that GFAP accumulation induces macroautophagy, a key clearance mechanism for prevention of aggregated proteins. This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is in part responsible for the down-regulation of phosphorylated-mTOR and the subsequent activation of autophagy. Our study suggests that AxD mutant GFAP accumulation stimulates autophagy, in a manner regulated by p38 MAPK and mTOR signaling pathways. Autophagy, in turn, serves as a mechanism to reduce GFAP levels.


Asunto(s)
Enfermedad de Alexander/genética , Enfermedad de Alexander/metabolismo , Autofagia/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/ultraestructura , Línea Celular Tumoral , Humanos , Ratones , Ratones Mutantes , Mutación , Inhibidores de Proteínas Quinasas , Proteínas Quinasas/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Serina-Treonina Quinasas TOR , Vacuolas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA