Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630959

RESUMEN

Cancer is a major global health issue and is a leading cause of mortality. It has been documented that various conventional treatments can be enhanced by incorporation with nanomaterials. Thanks to their rich optical properties, excellent biocompatibility, and tunable chemical reactivities, gold nanostructures have been gaining more and more research attention for cancer treatment in recent decades. In this review, we first summarize the recent progress in employing three typical gold nanostructures, namely spherical Au nanoparticles, Au nanorods, and atomically precise Au nanoclusters, for cancer diagnostics and therapeutics. Following that, the challenges and the future perspectives of this field are discussed. Finally, a brief conclusion is summarized at the end.

2.
Front Bioeng Biotechnol ; 8: 1019, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163475

RESUMEN

Noble metal (e.g., Au, Ag, Pt, Pd, and their alloys) nanoclusters (NCs) have emerged as a new type of functional nanomaterial in nanoscience and nanotechnology. Owing to their unique properties, such as their ultrasmall dimension, enhanced photoluminescence, low toxicity, and excellent biocompatibility, noble metal NCs-especially Au and Ag NCs-have found various applications in biomedical regimes. This review summarizes the recent advances made in employing ultrasmall Au and Ag NCs for biomedical applications, with particular emphasis on bioimaging and biosensing, anti-microbial applications, and tumor targeting and cancer treatment. Challenges, including the shared and specific challenges for Au and Ag NC toward biomedical applications, and future directions are briefly discussed at the end.

3.
Materials (Basel) ; 13(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218291

RESUMEN

Hot deformation behavior of a high-titanium Nb-micro-alloyed steel was investigated by conducting hot compression tests at the temperature of 900-1100 °C and the strain rate of 0.005-10 s-1. Using a sinh type constitutive equation, the apparent activation energy of the examined steel was 373.16 kJ/mol and the stress exponent was 6.059. The relations between Zener-Hollomon parameters versus peak stress (strain) or steady-state stress (strain) were successfully established via the Avrami equation. The dynamic recrystallization kinetics model of the examined steel was constructed and the validity was confirmed based on the experimental results. The 3-D atomic distribution maps illustrated that strain can significantly affect the values of power dissipation efficiency and the area of instability domains. The 3-D processing maps based on a dynamic material model at the strains of 0.2, 0.4, 0.6 and 0.8 were established. Based on traditional and 3-D processing maps and microstructural evaluation, the optimum parameter of for a high-titanium Nb-micro-alloyed steel was determined to be 1000-1050 °C/0.1-1 s-1.

4.
Oncol Res ; 27(9): 1051-1060, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31072420

RESUMEN

Medroxyprogesterone (MPA) is used for the conservative treatment of endometrial cancer. Unfortunately, progesterone resistance seriously affects its therapeutic effect. The purpose of the current study was to investigate the influence of deletion of AT-rich interactive domain 1A (ARID1A) in progesterone resistance in Ishikawa cells. Ablation of ARID1A was conducted through the CRISPR/Cas9 technology. Acquired progesterone-resistant Ishikawa (Ishikawa-PR) cells were generated by chronic exposure of Ishikawa cells to MPA. The sensitivity of the parental Ishikawa, Ishikawa-PR, and ARID1A-deficient cells to MPA and/or LY294002 was determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis. In addition, Western blot analysis and reverse transcription-polymerase chain reaction was performed to evaluate the mRNA and protein expression levels of ARID1A, progesterone receptor B (PRB), and P-AKT. Both Ishikawa-PR and ARID1A knockout cells showed insensitivity to MPA, downregulation of PRB, and hyperphosphorylation of AKT compared to the parental Ishikawa cells. Pretreatment with LY294002 significantly enhanced the ability of MPA to suppress proliferation and to induce apoptosis in the parental and Ishikawa-PR cells via the inhibition of AKT activation and upregulation of PRB transcriptional activity. However, the PRB transcriptional activity and insensitivity to MPA were irreversible by LY294002 in ARID1A-deficient cells. Ablation of ARID1A is associated with low PRB expression, which serves an important role in primary progesterone resistance. Akt inhibition cannot rescue PRB or sensitize to MPA in ARID1A knockout cells. These findings suggest that ARID1A may act as a reliable biomarker to predict the response for the combination of AKT inhibitor and MPA treatment.


Asunto(s)
Sistemas CRISPR-Cas/genética , Neoplasias Endometriales/genética , Endometrio/anomalías , Técnicas de Inactivación de Genes/métodos , Receptores de Progesterona/metabolismo , Enfermedades Uterinas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Neoplasias Endometriales/metabolismo , Endometrio/metabolismo , Femenino , Humanos
5.
ACS Appl Mater Interfaces ; 8(8): 5065-9, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26886556

RESUMEN

Acidic electrolytes are advantageous for water electrolysis in the production of hydrogen as there is a large supply of H(+) ions in the solution. In this study, with the applied overpotential larger than the equilibrium potential of Ni(0)/Ni(2+), Ni foam as HER electrode exhibits excellent and stable HER activity with an onset potential of -84 mV (vs RHE), a high current density of 10 mA cm(-2) at -210 mV (vs RHE), and prominent electrochemical durability (longer than 5 days) in acidic electrolyte. The results presented herein may has potential large-scale application in hydrogen energy production.

6.
ACS Appl Mater Interfaces ; 8(1): 1050-60, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26684587

RESUMEN

Photoresponsive molecules that incorporate peptides capable of material-specific recognition provide a basis for biomolecule-mediated control of the nucleation, growth, organization, and activation of hybrid inorganic/organic nanostructures. These hybrid molecules interact with the inorganic surface through multiple noncovalent interactions which allow reconfiguration in response to optical stimuli. Here, we quantify the binding of azobenzene-peptide conjugates that exhibit optically triggered cis-trans isomerization on Ag surfaces and compare to their behavior on Au. These results demonstrate differences in binding and switching behavior between the Au and Ag surfaces. These molecules can also produce and stabilize Au and Ag nanoparticles in aqueous media where the biointerface can be reproducibly and reversibly switched by optically triggered azobenzene isomerization. Comparisons of switching rates and reversibility on the nanoparticles reveal differences that depend upon whether the azobenzene is attached at the peptide N- or C-terminus, its isomerization state, and the nanoparticle composition. Our integrated experimental and computational investigation shows that the number of ligand anchor sites strongly influences the nanoparticle size. As predicted by our molecular simulations, weaker contact between the hybrid biomolecules and the Ag surface, with fewer anchor residues compared with Au, gives rise to differences in switching kinetics on Ag versus Au. Our findings provide a pathway toward achieving new remotely actuatable nanomaterials for multiple applications from a single system, which remains difficult to achieve using conventional approaches.


Asunto(s)
Compuestos Azo/química , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Plata/química , Adsorción , Isomerismo , Cinética , Ligandos , Luz , Nanopartículas del Metal/ultraestructura , Tecnicas de Microbalanza del Cristal de Cuarzo , Espectrofotometría Ultravioleta , Termodinámica
7.
J Am Chem Soc ; 138(2): 540-8, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26679562

RESUMEN

Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancement.


Asunto(s)
Oro/química , Nanopartículas del Metal , Péptidos/química , Catálisis , Microscopía Electrónica de Transmisión , Relación Estructura-Actividad , Difracción de Rayos X
8.
Artículo en Inglés | MEDLINE | ID: mdl-26357089

RESUMEN

Rapid advances in bionanotechnology have recently generated growing interest in identifying peptides that bind to inorganic materials and classifying them based on their inorganic material affinities. However, there are some distinct characteristics of inorganic materials binding sequence data that limit the performance of many widely-used classification methods when applied to this problem. In this paper, we propose a novel framework to predict the affinity classes of peptide sequences with respect to an associated inorganic material. We first generate a large set of simulated peptide sequences based on an amino acid transition matrix tailored for the specific inorganic material. Then the probability of test sequences belonging to a specific affinity class is calculated by minimizing an objective function. In addition, the objective function is minimized through iterative propagation of probability estimates among sequences and sequence clusters. Results of computational experiments on two real inorganic material binding sequence data sets show that the proposed framework is highly effective for identifying the affinity classes of inorganic material binding sequences. Moreover, the experiments on the structural classification of proteins (SCOP) data set shows that the proposed framework is general and can be applied to traditional protein sequences.


Asunto(s)
Sitios de Unión , Metales/química , Metales/metabolismo , Péptidos/metabolismo , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencia de Aminoácidos , Modelos Teóricos , Péptidos/química , Unión Proteica
9.
Nanoscale ; 6(6): 3165-72, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24496609

RESUMEN

Biomimetic nanotechnologies that use peptides to guide the growth and assembly of nanostructures offer new avenues for the creation of functional nanomaterials and manipulation of their physicochemical properties. However, the impacts of peptide sequence and binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain poorly understood. The configurations of the biomolecules are expected to be extremely important for directing the synthesis and achieving desired material functionality, and these binding motifs will vary with the peptide sequence. Here, we have prepared a series of Au nanoparticles capped with a variety of materials-directing peptides with known affinity for metal surfaces. These nanomaterials were characterized by UV-vis and circular dichroism spectroscopies, transmission electron microscopy, and ζ-potential measurement. Then their catalytic activity for 4-nitrophenol reduction was analyzed. The results indicate that substantially different Au-peptide interfaces are generated using different peptide sequences, even when these sequences have similar binding affinity. This is consistent with recent work showing that Au-peptide binding affinity can have varying entropic and enthalpic contributions, with enthalpically- and entropically-driven binders exhibiting quite different ensembles of configurations on the Au surface. The catalytic activity, as reflected by the measured activation energy, did not correlate with the particle size or with the binding affinity of the peptides, suggesting that the reactivity of these materials is governed by the more subtle details of the conformation of the bound peptide and on the nanoparticle surface reconstruction as dictated by the peptide structure. Such variations in both nanoparticle surface reconstruction and peptide configuration could potentially be used to program specific functionality into the peptide-capped nanomaterials.


Asunto(s)
Oro/química , Nanopartículas/química , Péptidos/química , Secuencia de Aminoácidos , Catálisis , Nitrofenoles/química , Oxidación-Reducción , Tamaño de la Partícula , Péptidos/metabolismo , Propiedades de Superficie , Termodinámica
10.
ACS Nano ; 7(11): 9632-46, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24124916

RESUMEN

Bionanocombinatorics is an emerging field that aims to use combinations of positionally encoded biomolecules and nanostructures to create materials and devices with unique properties or functions. The full potential of this new paradigm could be accessed by exploiting specific noncovalent interactions between diverse palettes of biomolecules and inorganic nanostructures. Advancement of this paradigm requires peptide sequences with desired binding characteristics that can be rationally designed, based upon fundamental, molecular-level understanding of biomolecule-inorganic nanoparticle interactions. Here, we introduce an integrated method for building this understanding using experimental measurements and advanced molecular simulation of the binding of peptide sequences to gold surfaces. From this integrated approach, the importance of entropically driven binding is quantitatively demonstrated, and the first design rules for creating both enthalpically and entropically driven nanomaterial-binding peptide sequences are developed. The approach presented here for gold is now being expanded in our laboratories to a range of inorganic nanomaterials and represents a key step toward establishing a bionanocombinatorics assembly paradigm based on noncovalent peptide-materials recognition.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Nanotecnología/métodos , Adsorción , Algoritmos , Secuencia de Aminoácidos , Simulación por Computador , Entropía , Oro/química , Cinética , Nanopartículas del Metal/química , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Método de Montecarlo , Nanopartículas/química , Péptidos/química , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA