Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Public Health ; 12: 1344865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774048

RESUMEN

Respiratory system cancer, encompassing lung, trachea and bronchus cancer, constitute a substantial and evolving public health challenge. Since pollution plays a prominent cause in the development of this disease, identifying which substances are most harmful is fundamental for implementing policies aimed at reducing exposure to these substances. We propose an approach based on explainable artificial intelligence (XAI) based on remote sensing data to identify the factors that most influence the prediction of the standard mortality ratio (SMR) for respiratory system cancer in the Italian provinces using environment and socio-economic data. First of all, we identified 10 clusters of provinces through the study of the SMR variogram. Then, a Random Forest regressor is used for learning a compact representation of data. Finally, we used XAI to identify which features were most important in predicting SMR values. Our machine learning analysis shows that NO, income and O3 are the first three relevant features for the mortality of this type of cancer, and provides a guideline on intervention priorities in reducing risk factors.


Asunto(s)
Contaminación del Aire , Inteligencia Artificial , Neoplasias del Sistema Respiratorio , Humanos , Italia/epidemiología , Contaminación del Aire/efectos adversos , Neoplasias del Sistema Respiratorio/mortalidad , Factores de Riesgo , Aprendizaje Automático , Exposición a Riesgos Ambientales/efectos adversos
2.
J Pers Med ; 14(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38673057

RESUMEN

Respiratory malignancies, encompassing cancers affecting the lungs, the trachea, and the bronchi, pose a significant and dynamic public health challenge. Given that air pollution stands as a significant contributor to the onset of these ailments, discerning the most detrimental agents becomes imperative for crafting policies aimed at mitigating exposure. This study advocates for the utilization of explainable artificial intelligence (XAI) methodologies, leveraging remote sensing data, to ascertain the primary influencers on the prediction of standard mortality rates (SMRs) attributable to respiratory cancer across Italian provinces, utilizing both environmental and socioeconomic data. By scrutinizing thirteen distinct machine learning algorithms, we endeavor to pinpoint the most accurate model for categorizing Italian provinces as either above or below the national average SMR value for respiratory cancer. Furthermore, employing XAI techniques, we delineate the salient factors crucial in predicting the two classes of SMR. Through our machine learning scrutiny, we illuminate the environmental and socioeconomic factors pertinent to mortality in this disease category, thereby offering a roadmap for prioritizing interventions aimed at mitigating risk factors.

3.
Front Microbiol ; 15: 1348974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426064

RESUMEN

Background: Colorectal cancer (CRC) is a type of tumor caused by the uncontrolled growth of cells in the mucosa lining the last part of the intestine. Emerging evidence underscores an association between CRC and gut microbiome dysbiosis. The high mortality rate of this cancer has made it necessary to develop new early diagnostic methods. Machine learning (ML) techniques can represent a solution to evaluate the interaction between intestinal microbiota and host physiology. Through explained artificial intelligence (XAI) it is possible to evaluate the individual contributions of microbial taxonomic markers for each subject. Our work also implements the Shapley Method Additive Explanations (SHAP) algorithm to identify for each subject which parameters are important in the context of CRC. Results: The proposed study aimed to implement an explainable artificial intelligence framework using both gut microbiota data and demographic information from subjects to classify a cohort of control subjects from those with CRC. Our analysis revealed an association between gut microbiota and this disease. We compared three machine learning algorithms, and the Random Forest (RF) algorithm emerged as the best classifier, with a precision of 0.729 ± 0.038 and an area under the Precision-Recall curve of 0.668 ± 0.016. Additionally, SHAP analysis highlighted the most crucial variables in the model's decision-making, facilitating the identification of specific bacteria linked to CRC. Our results confirmed the role of certain bacteria, such as Fusobacterium, Peptostreptococcus, and Parvimonas, whose abundance appears notably associated with the disease, as well as bacteria whose presence is linked to a non-diseased state. Discussion: These findings emphasizes the potential of leveraging gut microbiota data within an explainable AI framework for CRC classification. The significant association observed aligns with existing knowledge. The precision exhibited by the RF algorithm reinforces its suitability for such classification tasks. The SHAP analysis not only enhanced interpretability but identified specific bacteria crucial in CRC determination. This approach opens avenues for targeted interventions based on microbial signatures. Further exploration is warranted to deepen our understanding of the intricate interplay between microbiota and health, providing insights for refined diagnostic and therapeutic strategies.

4.
Sci Rep ; 13(1): 16590, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789191

RESUMEN

Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Tiroides , Humanos , Diagnóstico Diferencial , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Algoritmos , Espectrometría Raman/métodos
5.
Front Microbiol ; 14: 1261889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808286

RESUMEN

Microbiome data predictive analysis within a machine learning (ML) workflow presents numerous domain-specific challenges involving preprocessing, feature selection, predictive modeling, performance estimation, model interpretation, and the extraction of biological information from the results. To assist decision-making, we offer a set of recommendations on algorithm selection, pipeline creation and evaluation, stemming from the COST Action ML4Microbiome. We compared the suggested approaches on a multi-cohort shotgun metagenomics dataset of colorectal cancer patients, focusing on their performance in disease diagnosis and biomarker discovery. It is demonstrated that the use of compositional transformations and filtering methods as part of data preprocessing does not always improve the predictive performance of a model. In contrast, the multivariate feature selection, such as the Statistically Equivalent Signatures algorithm, was effective in reducing the classification error. When validated on a separate test dataset, this algorithm in combination with random forest modeling, provided the most accurate performance estimates. Lastly, we showed how linear modeling by logistic regression coupled with visualization techniques such as Individual Conditional Expectation (ICE) plots can yield interpretable results and offer biological insights. These findings are significant for clinicians and non-experts alike in translational applications.

6.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894965

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the number of cases is constantly increasing. Early and accurate HCC diagnosis is crucial to improving the effectiveness of treatment. The aim of the study is to develop a supervised learning framework based on hierarchical community detection and artificial intelligence in order to classify patients and controls using publicly available microarray data. With our methodology, we identified 20 gene communities that discriminated between healthy and cancerous samples, with an accuracy exceeding 90%. We validated the performance of these communities on an independent dataset, and with two of them, we reached an accuracy exceeding 80%. Then, we focused on two communities, selected because they were enriched with relevant biological functions, and on these we applied an explainable artificial intelligence (XAI) approach to analyze the contribution of each gene to the classification task. In conclusion, the proposed framework provides an effective methodological and quantitative tool helping to find gene communities, which may uncover pivotal mechanisms responsible for HCC and thus discover new biomarkers.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Inteligencia Artificial , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Marcadores Genéticos , Estado de Salud
7.
Front Immunol ; 13: 917939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833126

RESUMEN

Background: Psoriatic Arthritis (PsA) is a multifactorial disease, and predicting remission is challenging. Machine learning (ML) is a promising tool for building multi-parametric models to predict clinical outcomes. We aimed at developing a ML algorithm to predict the probability of remission in PsA patients on treatment with Secukinumab (SEC). Methods: PsA patients undergoing SEC treatment between September 2017 and September 2020 were retrospectively analyzed. At baseline and 12-month follow-up, we retrieved demographic and clinical characteristics, including Body Mass Index (BMI), disease phenotypes, Disease Activity in PsA (DAPSA), Leeds Enthesitis Index (LEI) and presence/absence of comorbidities, including fibromyalgia and metabolic syndrome. Two random feature elimination wrappers, based on an eXtreme Gradient Boosting (XGBoost) and Logistic Regression (LR), were trained and validated with 10-fold cross-validation for predicting 12-month DAPSA remission with an attribute core set with the least number of predictors. The performance of each algorithm was assessed in terms of accuracy, precision, recall and area under receiver operating characteristic curve (AUROC). Results: One-hundred-nineteen patients were selected. At 12 months, 20 out of 119 patients (25.21%) achieved DAPSA remission. Accuracy and AUROC of XGBoost was of 0.97 ± 0.06 and 0.97 ± 0.07, overtaking LR (accuracy 0.73 ± 0.09, AUROC 0.78 ± 0.14). Baseline DAPSA, fibromyalgia and axial disease were the most important attributes for the algorithm and were negatively associated with 12-month DAPSA remission. Conclusions: A ML approach may identify SEC good responders. Patients with a high disease burden and axial disease with comorbid fibromyalgia seem challenging to treat.


Asunto(s)
Artritis Psoriásica , Fibromialgia , Anticuerpos Monoclonales Humanizados , Artritis Psoriásica/complicaciones , Artritis Psoriásica/diagnóstico , Artritis Psoriásica/tratamiento farmacológico , Fibromialgia/complicaciones , Humanos , Aprendizaje Automático , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
8.
Phys Med ; 83: 221-241, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33951590

RESUMEN

PURPOSE: To perform a systematic review on the research on the application of artificial intelligence (AI) to imaging published in Italy and identify its fields of application, methods and results. MATERIALS AND METHODS: A Pubmed search was conducted using terms Artificial Intelligence, Machine Learning, Deep learning, imaging, and Italy as affiliation, excluding reviews and papers outside time interval 2015-2020. In a second phase, participants of the working group AI4MP on Artificial Intelligence of the Italian Association of Physics in Medicine (AIFM) searched for papers on AI in imaging. RESULTS: The Pubmed search produced 794 results. 168 studies were selected, of which 122 were from Pubmed search and 46 from the working group. The most used imaging modality was MRI (44%) followed by CT(12%) ad radiography/mammography (11%). The most common clinical indication were neurological diseases (29%) and diagnosis of cancer (25%). Classification was the most common task for AI (57%) followed by segmentation (16%). 65% of studies used machine learning and 35% used deep learning. We observed a rapid increase of research in Italy on artificial intelligence in the last 5 years, peaking at 155% from 2018 to 2019. CONCLUSIONS: We are witnessing an unprecedented interest in AI applied to imaging in Italy, in a diversity of fields and imaging techniques. Further initiatives are needed to build common frameworks and databases, collaborations among different types of institutions, and guidelines for research on AI.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Italia , Imagen por Resonancia Magnética , Física
9.
Front Oncol ; 11: 576007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777733

RESUMEN

The mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we present the preliminary results of a prediction model of the Breast Cancer Recurrence (BCR) within five and ten years after diagnosis. The main breast cancer-related and treatment-related features of 256 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) were used to train machine learning algorithms at the-state-of-the-art. Firstly, we implemented several feature importance techniques and then we evaluated the prediction performances of BCR within 5 and 10 years after the first diagnosis by means different classifiers. By using a small number of features, the models reached highly performing results both with reference to the BCR within 5 years and within 10 years with an accuracy of 77.50% and 80.39% and a sensitivity of 92.31% and 95.83% respectively, in the hold-out sample test. Despite validation studies are needed on larger samples, our results are promising for the development of a reliable prognostic supporting tool for clinicians in the definition of personalized treatment plans.

10.
Diagnostics (Basel) ; 10(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957690

RESUMEN

Contrast-Enhanced Spectral Mammography (CESM) is a recently introduced mammographic method with characteristics particularly suitable for breast cancer radiomic analysis. This work aims to evaluate radiomic features for predicting histological outcome and two cancer molecular subtypes, namely Human Epidermal growth factor Receptor 2 (HER2)-positive and triple-negative. From 52 patients, 68 lesions were identified and confirmed on histological examination. Radiomic analysis was performed on regions of interest (ROIs) selected from both low-energy (LE) and ReCombined (RC) CESM images. Fourteen statistical features were extracted from each ROI. Expression of estrogen receptor (ER) was significantly correlated with variation coefficient and variation range calculated on both LE and RC images; progesterone receptor (PR) with skewness index calculated on LE images; and Ki67 with variation coefficient, variation range, entropy and relative smoothness indices calculated on RC images. HER2 was significantly associated with relative smoothness calculated on LE images, and grading tumor with variation coefficient, entropy and relative smoothness calculated on RC images. Encouraging results for differentiation between ER+/ER-, PR+/PR-, HER2+/HER2-, Ki67+/Ki67-, High-Grade/Low-Grade and TN/NTN were obtained. Specifically, the highest performances were obtained for discriminating HER2+/HER2- (90.87%), ER+/ER- (83.79%) and Ki67+/Ki67- (84.80%). Our results suggest an interesting role for radiomics in CESM to predict histological outcomes and particular tumors' molecular subtype.

11.
Diagnostics (Basel) ; 10(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397505

RESUMEN

The typification of breast lumps with fine-needle biopsies is often affected by inconclusive results that extend diagnostic time. Many breast centers have progressively substituted cytology with micro-histology. The aim of this study is to assess the performance of a 13G-needle biopsy using cable-free vacuum-assisted breast biopsy (VABB) technology. Two of our operators carried out 200 micro-histological biopsies using the Elite 13G-needle VABB and 1314 14-16G-needle core biopsies (CBs) on BI-RADS 3, 4, and 5 lesions. Thirty-one of the procedures were repeated following CB, eighteen following cytological biopsy, and three after undergoing both procedures. The VABB Elite procedure showed high diagnostic performance with an accuracy of 94.00%, a sensitivity of 92.30%, and a specificity of 100%, while the diagnostic underestimation was 11.00%, all significantly comparable to of the CB procedure. The VABB Elite 13G system has been shown to be a simple, rapid, reliable, and well-tolerated biopsy procedure, without any significant complications and with a diagnostic performance comparable to traditional CB procedures. The histological class change in an extremely high number of samples would suggest the use of this procedure as a second-line biopsy for suspect cases or those with indeterminate cyto-histological results.

12.
Cancers (Basel) ; 12(5)2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429446

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare neoplasm, mainly caused by asbestos exposure, with a high mortality rate. The management of patients with MPM is controversial due to a long latency period between exposure and diagnosis and because of non-specific symptoms generally appearing at advanced stage of the disease. Breath analysis, aimed at the identification of diagnostic Volatile Organic Compounds (VOCs) pattern in exhaled breath, is believed to improve early detection of MPM. Therefore, in this study, breath samples from 14 MPM patients and 20 healthy controls (HC) were collected and analyzed by Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC/MS). Nonparametric test allowed to identify the most weighting variables to discriminate between MPM and HC breath samples and multivariate statistics were applied. Considering that MPM is an aggressive neoplasm leading to a late diagnosis and thus the recruitment of patients is very difficult, a promising data mining approach was developed and validated in order to discriminate between MPM patients and healthy controls, even if no large population data are available. Three different machine learning algorithms were applied to perform the classification task with a leave-one-out cross-validation approach, leading to remarkable results (Area Under Curve AUC = 93%). Ten VOCs, such as ketones, alkanes and methylate derivates, as well as hydrocarbons, were able to discriminate between MPM patients and healthy controls and for each compound which resulted diagnostic for MPM, the metabolic pathway was studied in order to identify the link between VOC and the neoplasm. Moreover, five breath samples from asymptomatic asbestos-exposed persons (AEx) were exploratively analyzed, processed and tested by the validated statistical method as blinded samples in order to evaluate the performance for the early recognition of patients affected by MPM among asbestos-exposed persons. Good agreement was found between the information obtained by gold-standard diagnostic methods such as computed tomography CT and model output.

13.
BMC Bioinformatics ; 21(Suppl 2): 91, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32164532

RESUMEN

BACKGROUND: Screening programs use mammography as primary diagnostic tool for detecting breast cancer at an early stage. The diagnosis of some lesions, such as microcalcifications, is still difficult today for radiologists. In this paper, we proposed an automatic binary model for discriminating tissue in digital mammograms, as support tool for the radiologists. In particular, we compared the contribution of different methods on the feature selection process in terms of the learning performances and selected features. RESULTS: For each ROI, we extracted textural features on Haar wavelet decompositions and also interest points and corners detected by using Speeded Up Robust Feature (SURF) and Minimum Eigenvalue Algorithm (MinEigenAlg). Then a Random Forest binary classifier is trained on a subset of a sub-set features selected by two different kinds of feature selection techniques, such as filter and embedded methods. We tested the proposed model on 260 ROIs extracted from digital mammograms of the BCDR public database. The best prediction performance for the normal/abnormal and benign/malignant problems reaches a median AUC value of 98.16% and 92.08%, and an accuracy of 97.31% and 88.46%, respectively. The experimental result was comparable with related work performance. CONCLUSIONS: The best performing result obtained with embedded method is more parsimonious than the filter one. The SURF and MinEigen algorithms provide a strong informative content useful for the characterization of microcalcification clusters.


Asunto(s)
Mama , Calcinosis/diagnóstico , Aprendizaje Automático , Algoritmos , Área Bajo la Curva , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Bases de Datos Factuales , Femenino , Humanos , Mamografía , Curva ROC
14.
J BUON ; 24(4): 1360-1366, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31646778

RESUMEN

PURPOSE: Extramammary breast tumors are quite unusual but they might represent the first semiotic sign of non negative mammography. Thus, the need for an early and accurate diagnosis is crucial, with the purpose of planning and optimize the therapeuthical strategy and consequently to improve the clinical outcome of patients. METHODS: Due to the intrinsic characteristics of this technique, CESM lends itself as a useful and reliable tool for a complex diagnosis, since it may simultaneously provide both the data of the mammographic semiotic and the dynamic one of an examination with a contrast medium. RESULTS: In this article, the most common radiological signs of this type of lesions are summarized through an analysis of the published literature. The article focuses on the different mammographic semeiotics in primary and secondary malignant lesions in the breast, on the different aspects of metastases deriving from blood and lymphatic spread, as well as on the common analogies between metastatic lesions and fibroadenomas. Moreover, the characteristics of a unique case of breast metastasis from pleural mesothelioma, analyzed by Contrast-Enhanced Spectral Mammography, are described. CONCLUSIONS: On the basis of our experience, CESM could represent an extremely valid method to address a correct diagnosis in complex cases of potentially metastatic lesions.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Mama/diagnóstico por imagen , Medios de Contraste/uso terapéutico , Metástasis de la Neoplasia/diagnóstico , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Mamografía , Metástasis de la Neoplasia/diagnóstico por imagen , Metástasis de la Neoplasia/patología
15.
J Clin Med ; 8(6)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234363

RESUMEN

Contrast-Enhanced Spectral Mammography (CESM) is a novelty instrumentation for diagnosing of breast cancer, but it can still be considered operator dependent. In this paper, we proposed a fully automatic system as a diagnostic support tool for the clinicians. For each Region Of Interest (ROI), a features set was extracted from low-energy and recombined images by using different techniques. A Random Forest classifier was trained on a selected subset of significant features by a sequential feature selection algorithm. The proposed Computer-Automated Diagnosis system is tested on 48 ROIs extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) from the breast cancer screening phase between March 2017 and June 2018. The present method resulted highly performing in the prediction of benign/malignant ROIs with median values of sensitivity and specificity of 87 . 5 % and 91 . 7 % , respectively. The performance was high compared to the state-of-the-art, even with a moderate/marked level of parenchymal background. Our classification model outperformed the human reader, by increasing the specificity over 8 % . Therefore, our system could represent a valid support tool for radiologists for interpreting CESM images, both reducing the false positive rate and limiting biopsies and surgeries.

16.
J Digit Imaging ; 24(1): 11-27, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19826872

RESUMEN

A fully automated and three-dimensional (3D) segmentation method for the identification of the pulmonary parenchyma in thorax X-ray computed tomography (CT) datasets is proposed. It is meant to be used as pre-processing step in the computer-assisted detection (CAD) system for malignant lung nodule detection that is being developed by the Medical Applications in a Grid Infrastructure Connection (MAGIC-5) Project. In this new approach the segmentation of the external airways (trachea and bronchi), is obtained by 3D region growing with wavefront simulation and suitable stop conditions, thus allowing an accurate handling of the hilar region, notoriously difficult to be segmented. Particular attention was also devoted to checking and solving the problem of the apparent 'fusion' between the lungs, caused by partial-volume effects, while 3D morphology operations ensure the accurate inclusion of all the nodules (internal, pleural, and vascular) in the segmented volume. The new algorithm was initially developed and tested on a dataset of 130 CT scans from the Italung-CT trial, and was then applied to the ANODE09-competition images (55 scans) and to the LIDC database (84 scans), giving very satisfactory results. In particular, the lung contour was adequately located in 96% of the CT scans, with incorrect segmentation of the external airways in the remaining cases. Segmentation metrics were calculated that quantitatively express the consistency between automatic and manual segmentations: the mean overlap degree of the segmentation masks is 0.96 ± 0.02, and the mean and the maximum distance between the mask borders (averaged on the whole dataset) are 0.74 ± 0.05 and 4.5 ± 1.5, respectively, which confirms that the automatic segmentations quite correctly reproduce the borders traced by the radiologist. Moreover, no tissue containing internal and pleural nodules was removed in the segmentation process, so that this method proved to be fit for the use in the framework of a CAD system. Finally, in the comparison with a two-dimensional segmentation procedure, inter-slice smoothness was calculated, showing that the masks created by the 3D algorithm are significantly smoother than those calculated by the 2D-only procedure.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/diagnóstico , Pulmón/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
17.
Med Image Anal ; 14(6): 707-22, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20573538

RESUMEN

Numerous publications and commercial systems are available that deal with automatic detection of pulmonary nodules in thoracic computed tomography scans, but a comparative study where many systems are applied to the same data set has not yet been performed. This paper introduces ANODE09 ( http://anode09.isi.uu.nl), a database of 55 scans from a lung cancer screening program and a web-based framework for objective evaluation of nodule detection algorithms. Any team can upload results to facilitate benchmarking. The performance of six algorithms for which results are available are compared; five from academic groups and one commercially available system. A method to combine the output of multiple systems is proposed. Results show a substantial performance difference between algorithms, and demonstrate that combining the output of algorithms leads to marked performance improvements.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Validación de Programas de Computación , Programas Informáticos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Med Phys ; 36(10): 4644-53, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19928096

RESUMEN

PURPOSE: The x-ray transmitted beam from any material/tissue depends on the complex refractive index (n= 1-delta+ibeta), where delta is responsible for the phase shift and beta is for the beam attenuation. Although for human tissues, the delta cross section is about 1000 times greater than the beta ones in the x-ray energy range from 10 to 150 keV, the gain in breast tumor visualization of phase-contrast mammography (PCM) with respect to absorption contact imaging (AI) is limited by the maximum dose that can be delivered to the patient. Moreover, in-line PC imaging (PCI) is the simplest experimental mode among all available x-ray PCI techniques since no optics are needed. The latter is a fundamental requirement in order to transfer the results of laboratory research into hospitals. Alternative to synchrotron radiation sources, the implementation of relativistic Thomson-scattering (TS) x-ray sources is particularly suitable for hospital use because of their high peak brightness within a relatively compact and affordable system. In this work, the possibility to realize PCM using a TS source in a hospital environment is studied, accounting for the effect of a finite deliverable dose on the PC visibility enhancement with respect to AI. METHODS: The contrast-to-noise ratio of tumor-tissue lesions in PCM has been studied on the bases of a recent theoretical model, describing image contrast formation by means of both wave-optical theory and the mutual coherence formalism. The latter is used to describe the evolution, during wave propagation, of the coherence of the wave field emitted by a TS source. The contrast-to-noise ratio for both PCI and AI has been analyzed in terms of tumor size, beam energy, detector, and source distances, studying optimal conditions for performing PCM. Regarding other relevant factors which could influence "tumor" visibility, the authors have assumed simplified conditions such as a spherical shape description of the tumor inclusion, a constant surrounding background, ideal conditions for the calculus of the contrast-to-noise ratio. RESULTS: The results show the possibility to enhance with PCI the signal-to-noise ratio for features in the submillimeter scale. This finding could give PCM a great advantage with respect to AI, opening the possibility to decrease the number of wrong diagnoses before histological exams. The results agree with experimental evidences obtained by Dreossi et al. [D. Dreossi et al., "The mammography project at the SYRMEP beamline," Eur. J. Radiol. 68, S58-S62 (2008)] with real PCM using synchrotron radiation. CONCLUSIONS: The challenging characteristics of TS sources, suitable for PCM, should be fluxes of at least 10(11) photons/s emitted by very small sources of about 10 microm, together with moderate energy spreads (less than 10%) in order to realize both sufficient spatial coherence and enough fluence on the patient, collecting images in reasonable exposure times. These fluxes will be achieved by next generation TS sources which are already under development.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Modelos Biológicos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Femenino , Humanos , Mamografía , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA