Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cancer Res Commun ; 4(9): 2399-2414, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39177280

RESUMEN

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Paradoxically, this tumor displays an initial exquisite response to chemotherapy; however, at relapse, the tumor is highly resistant to subsequent available therapies. Here, we report that the expression of three prime repair exonuclease 1 (TREX1) is strongly induced in chemoresistant SCLCs. Assay for transposase-accessible chromatin using sequencing and chromatin immunoprecipitation sequencing revealed a significant increase in chromatin accessibility and transcriptional activity of TREX1 gene locus in chemoresistant SCLCs. Analyses of human SCLC tumors and patient-derived xenografts (PDX) also showed an increase in TREX1 expression in postchemotherapy samples. TREX1 depletion caused the activation of cyclic GMP-AMP synthase stimulator of interferon gene pathway due to cytoplasmic accumulation of damage-associated double-stranded DNA, inducing immunogenicity and enhancing the sensitivity of drug-resistant cells to chemotherapy. These findings suggest TREX1 upregulation may partially contribute to the survival of resistant cells, and its inhibition may represent a promising therapeutic strategy to enhance antitumor immunity and potentiate the efficacy of chemotherapy and/or immunotherapy in chemoresistant SCLCs. Significance: In this study, we show that targeting TREX1 induces an innate immune response and resensitizes SCLC cells to chemotherapy, representing a promising novel target for "immunologically" cold tumors, such as SCLC.


Asunto(s)
Resistencia a Antineoplásicos , Exodesoxirribonucleasas , Neoplasias Pulmonares , Fosfoproteínas , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Ratones , Línea Celular Tumoral , Exodesoxirribonucleasas/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Fosfoproteínas/antagonistas & inhibidores , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Discov ; 14(5): 752-765, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227896

RESUMEN

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE: STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Exodesoxirribonucleasas , Proteínas de la Membrana , Fosfoproteínas , Transducción de Señal , Exodesoxirribonucleasas/genética , Ratones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Humanos , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Interferones/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
3.
Respirol Case Rep ; 11(3): e01093, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36776994

RESUMEN

A 64-year-old man was diagnosed with small cell lung cancer (SCLC) with multiple bone and liver metastases and bone marrow metastases. Spontaneous tumour lysis syndrome (TLS) was observed before starting chemotherapy with carboplatin, etoposide, and atezolizumab. The tumour further collapsed, and the patient developed disseminated intravascular coagulation (DIC) on day 4 of chemotherapy. The patient was successfully treated with intravenous hydration and rasburicase for TLS and subcutaneous unfractionated heparin for DIC. A large amount of tissue factor may be released in TLS, which could induce DIC. However, to the best of our knowledge, this is the first report of DIC following TLS in a case of SCLC. DIC following TLS in SCLC is a rare but life-threatening oncologic complication. Therefore, clinicians should be aware of this possibility when treating patients with advanced SCLC.

4.
Commun Biol ; 6(1): 65, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653474

RESUMEN

Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Ratones , Animales , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Proteómica , Células Germinativas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
5.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066413

RESUMEN

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , 5'-Nucleotidasa/metabolismo
6.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150391

RESUMEN

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Decitabina , Genes ras , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
7.
Cancer Immunol Res ; 10(8): 947-961, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35678717

RESUMEN

Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Proteínas de la Membrana , Mesotelioma Maligno , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Proteínas de la Membrana/agonistas , Receptores Quiméricos de Antígenos
8.
Case Rep Pulmonol ; 2022: 1160000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35256912

RESUMEN

Calcified bilateral mediastinal lymph nodes are not common in malignant tumors. A 51-year-old woman presented to our hospital with a 20 mm nodule in the lower left lobe of the lung and extensive calcification in the bilateral mediastinal lymph nodes. Computed tomography indicated no calcification of the primary lesion. Immunohistochemical staining and fluorescent in situ hybridization detected an anaplastic lymphoma kinase (ALK) fusion. Treatment with alectinib, an ALK inhibitor, led to a significant reduction in tumor size and calcification in the lymph nodes. This case shows that different degrees of calcification can be associated with malignant tumors and may be reversible in some cases.

9.
Cancer Manag Res ; 13: 7497-7503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616179

RESUMEN

BACKGROUND: Metastatic peritoneal carcinomatosis (MPC) is not common in patients with non-small cell lung cancer (NSCLC), and the clinical characteristics and treatment outcomes are still unclear. PATIENTS AND METHODS: We recruited 46 NSCLC patients with MPC at Keio University and affiliated hospitals (Keio Lung Oncology Group) between January 2011 and December 2017, then retrospectively investigated their clinical characteristics and the impact of treatment interventions on their survival. RESULTS: The profile of histological subtype was predominantly adenocarcinoma and 15 patients harbored driver oncogenes. Univariate and multivariate analysis demonstrated that performance status and the presence of a driver oncogene were significantly associated with the prolonged overall survival (OS). Regarding treatment, the median OS in the treatment group (9.3 months) was significantly longer than in the best supportive care group (1.3 months) (P < 0.0001). CONCLUSION: The prognosis of MPC in NSCLC patients who receive only the best supportive care is poor, but therapeutic intervention may improve prognosis.

10.
Cancer Res ; 81(14): 3916-3929, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34083250

RESUMEN

Transdifferentiation of lung adenocarcinoma to small cell lung cancer (SCLC) has been reported in a subset of lung cancer cases that bear EGFR mutations. Several studies have reported the prerequisite role of TP53 and RB1 alterations in transdifferentiation. However, the mechanism underlying transdifferentiation remains understudied, and definitive additional events, the third hit, for transdifferentiation have not yet been identified. In addition, no prospective experiments provide direct evidence for transdifferentiation. In this study, we show that FGF9 upregulation plays an essential role in transdifferentiation. An integrative omics analysis of paired tumor samples from a patient with transdifferentiated SCLC exhibited robust upregulation of FGF9. Furthermore, FGF9 upregulation was confirmed at the protein level in four of six (66.7%) paired samples. FGF9 induction transformed mouse lung adenocarcinoma-derived cells to SCLC-like tumors in vivo through cell autonomous activation of the FGFR pathway. In vivo treatment of transdifferentiated SCLC-like tumors with the pan-FGFR inhibitor AZD4547 inhibited growth. In addition, FGF9 induced neuroendocrine differentiation, a pathologic characteristic of SCLC, in established human lung adenocarcinoma cells. Thus, the findings provide direct evidence for FGF9-mediated SCLC transdifferentiation and propose the FGF9-FGFR axis as a therapeutic target for transdifferentiated SCLC. SIGNIFICANCE: This study demonstrates that FGF9 plays a role in the transdifferentiation of lung adenocarcinoma to small cell lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Transdiferenciación Celular , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Carcinoma Pulmonar de Células Pequeñas/patología , Regulación hacia Arriba
11.
Expert Opin Ther Targets ; 25(3): 167-174, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33703985

RESUMEN

INTRODUCTION: KRAS mutations drive tumorigenesis by altering cell signaling and the tumor immune microenvironment. Recent studies have shown promise for KRAS-G12C covalent inhibitors, which are advancing rapidly through clinical trials. The sequencing and combination of these agents with other therapies including immune checkpoint blockade (ICB) will benefit from strategies that also address the immune microenvironment to improve durability of response. AREAS COVERED: This paper reviews KRAS signaling and discusses downstream effects on cytokine production and the tumor immune microenvironment. RAS targeted therapy is introduced and perspectives on therapeutic targeting of KRAS-G12C and its immunosuppressive tumor microenvironment are offered. EXPERT OPINION: The availability of KRAS-G12C covalent inhibitors raises hopes for targeting this pervasive oncogene and designing better therapeutic combinations to promote anti-tumor immunity. A comprehensive mechanistic understanding of KRAS immunosuppression is required in order to prioritize agents for clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Diseño de Fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Innata , Terapia Molecular Dirigida , Mutación , Neoplasias/genética , Neoplasias/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral/inmunología
12.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33151910

RESUMEN

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Asunto(s)
Inmunoterapia , Proteínas de Neoplasias , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1 , RNA-Seq , Análisis de la Célula Individual , Esferoides Celulares , Animales , Línea Celular Tumoral , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Esferoides Celulares/inmunología , Esferoides Celulares/patología
13.
Front Immunol ; 11: 2090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013881

RESUMEN

Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.


Asunto(s)
Células Endoteliales/metabolismo , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Línea Celular Tumoral , Técnicas de Cocultivo , Células Endoteliales/patología , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos Cíclicos/genética
14.
Cancer Sci ; 111(10): 3793-3801, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32687646

RESUMEN

ABT-263 (Navitoclax) is a BH3-mimetic drugs targeting anti-apoptotic B-cell lymphoma-2 (BCL-2) family proteins, including BCL-2, BCL-xL, and BCL-w, thereby inducing apoptosis. In small-cell lung cancer (SCLC) cells, the response to ABT-263 is associated with the expression of myeloid cell leukemia-1 (MCL-1) protein, however the efficacy of ABT-263 in non-small-cell lung cancer (NSCLC) has not been thoroughly evaluated. There are currently no established biomarkers for predicting the efficacy of ABT-263 treatment in NSCLC. We screened a panel of different NSCLC cell lines and found that ABT-263 inhibited cell proliferation and induced apoptosis in Calu-1, Calu-3, and BID007 cells. Inconsistent with previous reports on SCLC, low levels of MCL-1 did not predict the response to ABT-263 in NSCLC cells, however we found that intracellular levels of reactive oxygen species (ROS) in cancer cells were associated with sensitivity to ABT-263 in NSCLC cells. We also showed that increasing the level of intracellular ROS could enhance the sensitivity to ABT-263 in NSCLC cells. In summary, we propose that the intracellular levels of ROS could be used as a potential novel biomarker for predicting a response to ABT-263 in NSCLC. Furthermore, we show some evidence supporting the further assessment of ABT-263 as a new therapeutic strategy in patients with NSCLC combined with agents regulating ROS levels. We believe that our findings and follow-up studies on this matter would lead to novel diagnostic and treatment strategies in patients with NSCLC.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/etiología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Silenciador del Gen , Humanos , Espacio Intracelular , Neoplasias Pulmonares/etiología , Oxidación-Reducción , ARN Interferente Pequeño/genética
15.
Mol Clin Oncol ; 12(3): 273-277, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32064106

RESUMEN

The purpose of the present study was to evaluate the clinical profiles and treatment outcomes of patients with lung cancer admitted to the Medical Psychiatric Unit (MPU), which is built for patients with physical and severe psychiatric disorders. All medical records of patients with lung cancer admitted to the MPU of Tachikawa hospital were reviewed. The clinical outcomes of these patients were retrospectively evaluated between January 2010 and December 2016. A total of 24 patients in the MPU were histologically or cytologically diagnosed with primary lung cancer. Of these, 20 patients had schizophrenia, and 4 patients had a mood disorder. There were 15 patients who were diagnosed using bronchoscopy. The histology indicated adenocarcinoma, squamous cell carcinoma and non-small-cell lung cancer-not otherwise specified were in 11, 8, and 1 patient, respectively, while small-cell lung cancer was indicated in 4 patients. Surgery, chemoradiotherapy, radiotherapy, chemotherapy was performed in 13, 4, 2, 1 and 4 patients, respectively. The median survival time was 76.7 months for patients who underwent surgery, while it was 14.4 months for those who underwent chemoradiotherapy. In the MPU, patients with lung cancer and severe psychiatric disorders could be safely diagnosed, and patients with early-stage lung cancer exhibited long-term survival.

16.
Cancer Chemother Pharmacol ; 84(5): 1065-1071, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31493177

RESUMEN

BACKGROUND: No consensus has been reached regarding the treatment order and timing of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) and cytotoxic chemotherapy administration for EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. METHODS: In this phase II trial, chemotherapy-naïve patients harboring activating EGFR mutations with stage IIIB/IV or post-surgical recurrent non-squamous NSCLC were enrolled. Patients were treated with erlotinib induction at 150 mg/day for 3 months. This was followed by cytotoxic chemotherapy with platinum plus pemetrexed, with or without bevacizumab, when the induction erlotinib achieved a CR or PR. The primary end point was the 1-year progression-free survival (PFS) rate, while the secondary end points were the response rate (RR), PFS, safety, and overall survival (OS). RESULTS: Twenty patients were enrolled in this study. The median age was 63 years. Eighteen patients had stage IV disease, and 2 patients had recurrent disease. Eleven patients achieved a PR after induction of erlotinib and 9 out of 11 patients were switched to chemotherapy. The 1-year PFS rate was 45.0% (90% CI 26.8-63.2), the overall RR was 55.0%, and the median PFS was 10.7 months in the intention-to-treat (ITT) population. Grade 3-4 adverse events were reported for 40% of the patients, including patients with leukopenia (10%), neutropenia (20%), and interstitial pneumonitis, bacterial pneumonia, rash, and nausea (all 5%). CONCLUSIONS: The primary end point of this study was not achieved. However, the therapy was well tolerated and may be a treatment option for a future study with patients responsive to short-term erlotinib treatment. CLINICAL TRIALS REGISTRATION NUMBER: UMIN ID: 000013125.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/genética , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Pemetrexed/administración & dosificación , Compuestos de Platino/administración & dosificación , Supervivencia sin Progresión , Tasa de Supervivencia
17.
Mol Cancer Ther ; 18(9): 1593-1601, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253648

RESUMEN

EGFR-mutated lung cancer is a significant subgroup of non-small cell lung cancer. To inhibit EGFR-mediated signals, multiple EGFR tyrosine kinase inhibitors (EGFR-TKI) have been developed; however, approximately one third of patients with EGFR-mutated lung cancer do not respond to EGFR-TKIs. More effective inhibition of EGFR-mediated signals is therefore necessary. For cancers expressing mutated EGFR, including EGFR T790M, which confers resistance to first- (gefitinib and erlotinib) and second- (afatinib) generation EGFR-TKIs, the synergistic efficacy of afatinib and cetuximab combination therapy has been reported in preclinical and clinical studies; however, the mechanisms underlying this effect remain elusive. In this study, we evaluated the effects of multiple EGFR-TKIs on the EGFR monomer-dimer equilibrium by inducing dimerization-impairing mutations in cells expressing EGFR Interestingly, we found that afatinib and dacomitinib exhibit a monomer preference: cells expressing dimerization-impaired EGFR mutants exhibited increased sensitivity to afatinib and dacomitinib relative to those with dimerization-competent EGFR mutants. Although EGFR-TKIs themselves induce dimerization of EGFR, the inhibition of dimerization by cetuximab overcame EGFR-TKI-induced dimerization. By shifting the monomer-dimer equilibrium toward monomer dominance using cetuximab, the effectiveness of afatinib and dacomitinib improved significantly. We report a novel and clinically relevant phenomenon, the monomer preference of EGFR-TKIs, which can explain the mechanism underlying the synergism observed in afatinib and cetuximab combination therapy. In addition, we propose the novel concept that monomer-dimer equilibrium is an important factor in determining EGFR-TKI efficacy. These findings provide novel insights into treatment strategies for EGFR-TKI-refractory non-small cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cetuximab/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Afatinib/farmacología , Antineoplásicos Inmunológicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Humanos , Neoplasias Pulmonares/genética , Multimerización de Proteína , Resultado del Tratamiento
18.
Lung Cancer ; 127: 146-152, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642543

RESUMEN

OBJECTIVES: Epidermal growth factor receptor (EGFR) mutation-positive lung cancer accounts for a significant subgroup of non-small cell lung cancers (NSCLC). Approximately 4-10% of EGFR mutations in NSCLC are EGFR exon 20 insertion mutations, which are reportedly associated with resistance to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment. NSCLC patients carrying these mutations are rarely treated with EGFR-TKIs. The purpose of this study was to evaluate the efficacy of afatinib or osimertinib plus cetuximab combination therapy in experimental NSCLC models with EGFR exon 20 insertion mutations. MATERIALS AND METHODS: The EGFR mutations examined in this study were A763_Y764insFQEA, Y764_V765insHH, A767_V769dupASV, and D770_N771insNPG. Ba/F3 cells constitutively expressing wild type or mutated EGFR were used to determine the efficacy of afatinib or osimertinib plus cetuximab combination therapy in vitro. To determine the efficacy of the combination therapy in vivo, female BALB/c-nu mice were injected subcutaneously with 1 million Ba/F3 cells carrying EGFR A767_V769dupASV or Y764_V765insHH. RESULTS: We observed a mild but significant (P < 0.05) additive effect of the combination therapy against several EGFR exon 20 insertion mutations in vitro. Regarding EGFR A767_V769dupASV and EGFR Y764_V765insHH, cetuximab and afatinib single treatment did not induce significant inhibition of tumor formation; however, afatinib plus cetuximab combination treatment induced significant (P < 0.05) tumor growth inhibition without significant body weight loss or skin rash. CONCLUSION: The combination therapy induced a more potent inhibitory effect against several EGFR exon 20 insertion mutations than either therapy alone. Cetuximab can potentially increase the efficacy of afatinib or osimertinib in NSCLC with EGFR exon 20 insertion mutations.


Asunto(s)
Acrilamidas/uso terapéutico , Afatinib/uso terapéutico , Compuestos de Anilina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cetuximab/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Receptores ErbB/genética , Exones/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Mol Clin Oncol ; 6(3): 409-414, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28451422

RESUMEN

The aim of this study was to assess the efficacy and safety of erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), as second- or third-line treatment for elderly Japanese patients with non-small-cell lung cancer (NSCLC). The patients eligible for this phase II trial were aged ≥70 years, had stage III/IV or recurrent NSCLC, and had previously received 1 or 2 chemotherapy regimens that did not include EGFR-TKIs. The patients received erlotinib at a dose of 150 mg/day. The primary endpoint was overall response rate (ORR), and the secondary endpoints were progression-free survival (PFS), overall survival (OS) and toxicity. A total of 38 patients with a median age of 76 years were enrolled. The majority of the patients were men (66%), had an Eastern Cooperative Oncology Group performance status of 1 (58%), stage IV disease (66%) and adenocarcinoma (74%). Of the 35 patients, 13 (34%) had tumors with EGFR mutations. The ORR was 26.3% (95% confidence interval: 12.1-40.5%) and the disease control rate was 47.4%. The median PFS was 3.7 months and the median OS was 17.3 months. The grade 3 adverse events observed included rash (13%), diarrhea (5%), interstitial pneumonitis (5%), anorexia (3%) and gastrointestinal bleeding (3%). Grade 4 or 5 adverse events were not observed. The median OS did not differ significantly between patients aged <75 years (14.9 months) and those aged ≥75 years (19.0 months; P=0.226). Therefore, erlotinib was found to be effective and well-tolerated in elderly patients with previously treated NSCLC.

20.
Mol Cancer Res ; 15(1): 106-114, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707887

RESUMEN

Activation of the EGFR pathway is one of the mechanisms inducing acquired resistance to anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI) such as crizotinib and alectinib. Ceritinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the ALK gene rearrangement. However, the precise mechanism underlying acquired resistance to ceritinib is not well-defined. This study set out to clarify the mechanism in ALK-translocated lung cancer and to find the preclinical rationale overcoming EGFR pathway-induced acquired resistance to ALK-TKIs. To this end, ceritinib-resistant cells (H3122-CER) were established from the H3122 NSCLC cell line harboring the ALK gene rearrangement via long-term exposure to ceritinib. H3122-CER cells acquired resistance to ceritinib through EGFR bypass pathway activation. Furthermore, H3122 cells that became resistant to ceritinib or alectinib through EGFR pathway activation showed cross-resistance to other ALK-TKIs. Ceritinib and afatinib combination treatment partially restored the sensitivity to ceritinib. IMPLICATIONS: This study proposes a preclinical rationale to use ALK-TKIs and afatinib combination therapy for ALK-translocated lung cancers that have acquired resistance to ALK-TKIs through EGFR pathway activation. Mol Cancer Res; 15(1); 106-14. ©2016 AACR.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/efectos de los fármacos , Translocación Genética , Afatinib , Quinasa de Linfoma Anaplásico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Fosforilación/efectos de los fármacos , Pirimidinas , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sulfonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA