Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401945, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935046

RESUMEN

Anthracyclines are chemotherapeutic drugs used to treat solid and hematologic malignancies. However, life-threatening cardiotoxicity, with cardiac dilation and heart failure, is a drawback. A combination of in vivo for single cell/nucleus RNA sequencing and in vitro approaches is used to elucidate the underlying mechanism. Genetic depletion and pharmacological blocking peptides on phosphatidylinositol binding clathrin assembly (PICALM) are used to evaluate the role of PICALM in doxorubicin-induced cardiotoxicity in vivo. Human heart tissue samples are used for verification. Patients with end-stage heart failure and chemotherapy-induced cardiotoxicity have thinner cell membranes compared to healthy controls do. Using the doxorubicin-induced cardiotoxicity mice model, it is possible to replicate the corresponding phenotype in patients. Cellular changes in doxorubicin-induced cardiotoxicity in mice, especially in cardiomyocytes, are identified using single cell/nucleus RNA sequencing. Picalm expression is upregulated only in cardiomyocytes with doxorubicin-induced cardiotoxicity. Amyloid ß-peptide production is also increased after doxorubicin treatment, which leads to a greater increase in the membrane permeability of cardiomyocytes. Genetic depletion and pharmacological blocking peptides on Picalm reduce the generation of amyloid ß-peptide. This alleviates the doxorubicin-induced cardiotoxicity in vitro and in vivo. In human heart tissue samples of patients with chemotherapy-induced cardiotoxicity, PICALM, and amyloid ß-peptide are elevated as well.

2.
Int Heart J ; 65(3): 487-497, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38749755

RESUMEN

Myocardial fibrosis is a pathological feature of doxorubicin-induced chronic cardiotoxicity that severely affects the prognosis of oncology patients. However, the specific cellular and molecular mediators driving doxorubicin-induced cardiac fibrosis, and the relative impact of different cell populations on cardiac fibrosis, remain unclear.This study aimed to explore the mechanism of doxorubicin-induced cardiotoxicity and myocardial fibrosis and to find potential therapeutic targets. Single-cell RNA sequencing was used to analyze the transcriptome of non-cardiomyocytes from normal and doxorubicin-induced chronic cardiotoxicity in mouse model heart tissue.We established a mouse model of doxorubicin-induced cardiotoxicity with a well-defined fibrotic phenotype. Analysis of single-cell sequencing results showed that fibroblasts were the major origin of extracellular matrix in doxorubicin-induced myocardial fibrosis. Further resolution of fibroblast subclusters showed that resting fibroblasts were converted to matrifibrocytes and then to myofibroblasts to participate in the myocardial remodeling process in response to doxorubicin treatment. Ctsb expression was significantly upregulated in fibroblasts after doxorubicin-induced.This study provides a comprehensive map of the non-cardiomyocyte landscape at high resolution, reveals multiple cell populations contributing to pathological remodeling of the cardiac extracellular matrix, and identifies major cellular sources of myofibroblasts and dynamic gene-expression changes in fibroblast activation. Finally, we used this strategy to detect potential therapeutic targets and identified Ctsb as a specific target for fibroblasts in doxorubicin-induced myocardial fibrosis.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Fibrosis , Análisis de la Célula Individual , Doxorrubicina/efectos adversos , Animales , Ratones , Análisis de la Célula Individual/métodos , Miocardio/patología , Miocardio/metabolismo , Antibióticos Antineoplásicos/toxicidad , Antibióticos Antineoplásicos/efectos adversos , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Masculino , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Ratones Endogámicos C57BL
3.
J Mol Cell Cardiol ; 186: 45-56, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979444

RESUMEN

Cardiac hypertrophy can develop to end-stage heart failure (HF), which inevitably leading to heart transplantation or death. Preserving cardiac function in cardiomyocytes (CMs) is essential for improving prognosis in hypertrophic cardiomyopathy (HCM) patients. Therefore, understanding transcriptomic heterogeneity of CMs in HCM would be indispensable to aid potential therapeutic targets investigation. We isolated primary CM from HCM patients who had extended septal myectomy, and obtained transcriptomes in 338 human primary CM with single-cell tagged reverse transcription (STRT-seq) approach. Our results revealed that CMs could be categorized into three subsets in nonfailing HCM heart: high energy synthesis cluster, high cellular metabolism cluster and intermediate cluster. The expression of electron transport chain (ETC) was up-regulated in larger-sized CMs from high energy synthesis cluster. Of note, we found the expression of Cytochrome c oxidase subunit 7B (COX7B), a subunit of Complex IV in ETC had trends of positively correlation with CMs size. Further, by assessing COX7B expression in HCM patients, we speculated that COX7B was compensatory up-regulated at early-stage but down-regulated in failing HCM heart. To test the hypothesis that COX7B might participate both in hypertrophy and HF progression, we used adeno associated virus 9 (AAV9) to mediate the expression of Cox7b in pressure overload-induced mice. Mice in vivo data supported that knockdown of Cox7b would accelerate HF and Cox7b overexpression could restore partial cardiac function in hypertrophy. Our result highlights targeting COX7B and preserving energy synthesis in hypertrophic CMs could be a promising translational direction for HF therapeutic strategy.


Asunto(s)
Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Trasplante de Corazón , Humanos , Animales , Ratones , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo
4.
Int Immunopharmacol ; 121: 110523, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354779

RESUMEN

Macrophages play an essential role in the pathogenesis of autoimmune myocarditis, but the molecular mechanism remains largely unknown. Here, the role of Stimulator of interferon gene (Sting) in autoimmune myocarditis was investigated. Six-week-old male BALB/c mice received two subcutaneous injections of 250 µg α-MyHC peptide to establish experimental autoimmune myocarditis (EAM). With single-cell RNA sequencing analysis of cardiac immune (Cd45+) cells, Sting was found to initiate proinflammatory macrophage differentiation related to the acute EAM phase. Furthermore, proinflammatory macrophages contribute to the pathogenesis of EAM via hypoxia-inducible factor-1α (Hif1α). A higher expression level of Sting was detected in macrophages from myocarditis, which was positively correlated with Hif1α expression. Single-stranded DNA (ssDNA) accumulation in macrophages in myocarditis was observed in the hearts of EAM mice. Pharmacological blockade of STING by C-176 (a specific inhibitor) ameliorated the inflammatory response of EAM and reduced proinflammatory molecule (Ifn-ß, Tnf-α, Ccl2, and F4/80) expression and Hif1α expression. In vitro studies revealed that ssDNA activated the expression of Sting; in turn, Sting accelerated proinflammatory molecule expression in mouse macrophages. Inhibition of Hif1α expression could reduce Sting-associated cardiac inflammation and proinflammatory molecule expression. In addition, the expression of STING and ssDNA accumulation in macrophages were observed in human autoimmune myocarditis heart samples. STING activated proinflammatory macrophage via HIF1A, promoting the development of autoimmune myocarditis. The STING signaling pathway might provide a novel mechanism of autoimmune myocarditis and serve as a potential therapeutic target for autoimmune myocarditis patients.


Asunto(s)
Enfermedades Autoinmunes , Miocarditis , Animales , Humanos , Masculino , Ratones , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Fenotipo
5.
iScience ; 26(5): 106646, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168554

RESUMEN

Ischemia reperfusion injury (IRI), often related to surgical procedures, is one of the important causes of acute kidney injury (AKI). To decipher the dynamic process of AKI caused by IRI (with prolonged ischemia phase), we performed single-cell RNA sequencing (scRNA-seq) of clinically relevant IRI murine model with different ischemic intervals. We discovered that Slc5a2hi proximal tubular cells were susceptible to AKI and highly expressed neutral amino acid transporter gene Slc6a19, which was dramatically decreased over the time course. With the usage of mass spectrometry-based metabolomic analysis, we detected that the level of neutral amino acid isoleucine dropped off in AKI mouse plasma metabolites. And the reduction of plasma isoleucine was also verified in patients with cardiac surgery-associated acute kidney injury (CSA-AKI). The findings advanced the understanding of dynamic process of AKI and introduced reduction of isoleucine as a potential biomarker for CSA-AKI.

6.
Basic Res Cardiol ; 116(1): 64, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870762

RESUMEN

Acute rejection (AR) is an important contributor to graft failure, which remains a leading cause of death after heart transplantation (HTX). The regulation of immune metabolism has become a new hotspot in the development of immunosuppressive drugs. In this study, Increased glucose metabolism of cardiac macrophages was found in patients with AR. To find new therapeutic targets of immune metabolism regulation for AR, CD45+ immune cells extracted from murine isografts, allografts, and untransplanted donor hearts were explored by single-cell RNA sequencing. Total 20 immune cell subtypes were identified among 46,040 cells. The function of immune cells in AR were illustrated simultaneously. Cardiac resident macrophages were substantially replaced by monocytes and proinflammatory macrophages during AR. Monocytes/macrophages in AR allograft were more active in antigen presentation and inflammatory recruitment ability, and glycolysis. Based on transcription factor regulation analysis, we found that the increase of glycolysis in monocytes/macrophages was mainly regulated by HIF1A. Inhibition of HIF1A could alleviate inflammatory cells infiltration in AR. To find out the effect of HIF1A on AR, CD45+ immune cells extracted from allografts after HIF1A inhibitor treatment were explored by single-cell RNA sequencing. HIF1A inhibitor could reduce the antigen presenting ability and pro-inflammatory ability of macrophages, and reduce the infiltration of Cd4+ and Cd8a+ T cells in AR. The expression of Hif1α in AR monocytes/macrophages was regulated by pyruvate kinase 2. Higher expression of HIF1A in macrophages was also detected in human hearts with AR. These indicated HIF1A may serve as a potential target for attenuating AR.


Asunto(s)
Trasplante de Corazón , Animales , Rechazo de Injerto/prevención & control , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Macrófagos , Ratones , Donantes de Tejidos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA