Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Membranes (Basel) ; 13(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37367744

RESUMEN

Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this study aimed to uncover shared mechanisms in in vitro models of acquired BCa Tz resistance. Three widely used ERBB2+ BCa cell lines, adapted to grow in Tz, were examined. Despite investigating potential changes in phenotype, proliferation, and ERBB2 membrane expression in these Tz-resistant (Tz-R) cell lines compared to wild-type (wt) cells, no common alterations were discovered. Instead, high-resolution mass spectrometry analysis revealed a shared set of differentially expressed proteins (DEPs) in Tz-R versus wt cells. Bioinformatic analysis demonstrated that all three Tz-R cell models exhibited modulation of proteins associated with lipid metabolism, organophosphate biosynthesis, and macromolecule methylation. Ultrastructural examination corroborated the presence of altered lipid droplets in resistant cells. These findings strongly support the notion that intricate metabolic adaptations, including lipid metabolism, protein phosphorylation, and potentially chromatin remodeling, may contribute to Tz resistance. The detection of 10 common DEPs across all three Tz-resistant cell lines offers promising avenues for future therapeutic interventions, providing potential targets to overcome Tz resistance and potentially improve patient outcomes in ERBB2+ breast cancer.

2.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36765569

RESUMEN

Tumor-associated fibroblasts (TAF) exert immunosuppressive effects in colorectal carcinoma (CRC), impairing the recognition of tumor cells by effector lymphocytes, including Vδ2 T cells. Herein, we show that CRC-derived TAF can be turned by zoledronic acid (ZA), in soluble form or as antibody-drug conjugate (ADC), into efficient stimulators of Vδ2 T cells. CRC-TAF, obtained from patients, express the epidermal growth factor receptor (EGFR) and the butyrophilin family members BTN3A1/BTN2A1. These butyrophilins mediate the presentation of the phosphoantigens, accumulated in the cells due to ZA effect, to Vδ2 T cells. CRC-TAF exposed to soluble ZA acquired the ability to trigger the proliferation of Vδ2 T cells, in part represented by effector memory cells lacking CD45RA and CD27. In turn, expanded Vδ2 T cells exerted relevant cytotoxic activity towards CRC cells and CRC-TAF when primed with soluble ZA. Of note, also the ADC made of the anti-EGFR cetuximab (Cet) and ZA (Cet-ZA), that we recently described, induced the proliferation of anti-tumor Vδ2 T lymphocytes and their activation against CRC-TAF. These findings indicate that ZA can educate TAF to stimulate effector memory Vδ2 T cells; the Cet-ZA ADC formulation can lead to the precise delivery of ZA to EGFR+ cells, with a double targeting of TAF and tumor cells.

3.
Cell Mol Life Sci ; 79(5): 226, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35391557

RESUMEN

BACKGROUND: The impact of the absence of gravity on cancer cells is of great interest, especially today that space is more accessible than ever. Despite advances, few and contradictory data are available mainly due to different setup, experimental design and time point analyzed. METHODS: Exploiting a Random Positioning Machine, we dissected the effects of long-term exposure to simulated microgravity (SMG) on pancreatic cancer cells performing proteomic, lipidomic and transcriptomic analysis at 1, 7 and 9 days. RESULTS: Our results indicated that SMG affects cellular morphology through a time-dependent activation of Actin-based motility via Rho and Cdc42 pathways leading to actin rearrangement, formation of 3D spheroids and enhancement of epithelial-to-mesenchymal transition. Bioinformatic analysis reveals that SMG may activates ERK5/NF-κB/IL-8 axis that triggers the expansion of cancer stem cells with an increased migratory capability. These cells, to remediate energy stress and apoptosis activation, undergo a metabolic reprogramming orchestrated by HIF-1α and PI3K/Akt pathways that upregulate glycolysis and impair ß-oxidation, suggesting a de novo synthesis of triglycerides for the membrane lipid bilayer formation. CONCLUSIONS: SMG revolutionizes tumor cell behavior and metabolism leading to the acquisition of an aggressive and metastatic stem cell-like phenotype. These results dissect the time-dependent cellular alterations induced by SMG and pave the base for altered gravity conditions as new anti-cancer technology.


Asunto(s)
Neoplasias Pancreáticas , Ingravidez , Actinas , Humanos , Lipidómica , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinasas , Proteómica , Transcriptoma , Simulación de Ingravidez/métodos
4.
Cancers (Basel) ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35008423

RESUMEN

PURPOSE: The biochemical composition and architecture of the extracellular matrix (ECM) is known to condition development and invasiveness of neoplasms. To clarify this point, we analyzed ECM stiffness, collagen cross-linking and anisotropy in lymph nodes (LN) of Hodgkin lymphomas (HL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), compared with non-neoplastic LN (LDN). METHODS AND RESULTS: We found increased elastic (Young's) modulus in HL and advanced FL (grade 3A) over LDN, FL grade 1-2 and DLBCL. Digital imaging evidenced larger stromal areas in HL, where increased collagen cross-linking was found; in turn, architectural modifications were documented in FL3A by scanning electron microscopy and enhanced anisotropy by polarized light microscopy. Interestingly, HL expressed high levels of lysyl oxidase (LOX), an enzyme responsible for collagen cross-linking. Using gelatin scaffolds fabricated with a low elastic modulus, comparable to that of non-neoplastic tissues, we demonstrated that HL LN-derived mesenchymal stromal cells and HL cells increased the Young's modulus of the extracellular microenvironment through the expression of LOX. Indeed, LOX inhibition by ß-aminopropionitrile prevented the gelatin stiffness increase. CONCLUSIONS: These data indicate that different mechanical, topographical and/or architectural modifications of ECM are detectable in human lymphomas and are related to their histotype and grading.

5.
Haematologica ; 107(4): 909-920, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34109776

RESUMEN

Shedding of ADAM10 substrates, like TNFa or CD30, can affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. We have published two new ADAM10 inhibitors, LT4 and MN8 able to prevent such shedding in Hodgkin lymphoma (HL). Since tumor tissue architecture deeply influences the outcome of anti-cancer treatments, we set up a new threedimensional (3D) culture systems to verify whether ADAM10 inhibitors can contribute to, or enhance, the anti-lymphoma effects of the ADC brentuximab-vedotin (BtxVed). In order to recapitulate some aspects of lymphoma structure and architecture, we assembled two 3D culture models: mixed spheroids made of HL lymph node (LN) mesenchymal stromal cells (MSC) and Reed Sternberg/Hodgkin lymphoma cells (HL cells) or collagen scaffolds repopulated with LN-MSC and HL cells. In these 3D systems we found that: i) the ADAM10 inhibitors LT4 and MN8 reduce ATP content or glucose consumption, related to cell proliferation, increasing lactate dehydrogenase release as a cell damage hallmark; ii) these events are paralleled by mixed spheroids size reduction and inhibition of CD30 and TNFa shedding; iii) the effects observed can be reproduced in repopulated HL LN-derived matrix or collagen scaffolds; iv) ADAM10 inhibitors enhance the anti-lymphoma effect of the anti-CD30 ADC BtxVed both in conventional cultures and in repopulated scaffolds. Thus, we provide evidence for a direct and combined antilymphoma effect of ADAM10 inhibitors with BtxVed, leading to the improvement of ADC effects; this is documented in 3D models recapitulating features of the LN microenvironment, that can be proposed as a reliable tool for anti-lymphoma drug testing.


Asunto(s)
Proteína ADAM10/antagonistas & inhibidores , Brentuximab Vedotina/uso terapéutico , Enfermedad de Hodgkin , Inmunoconjugados , Linfoma , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/patología , Humanos , Inmunoconjugados/uso terapéutico , Antígeno Ki-1 , Linfoma/tratamiento farmacológico , Proteínas de la Membrana , Microambiente Tumoral
6.
J Cell Physiol ; 235(4): 3508-3518, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31549411

RESUMEN

Muscle loss is a major problem for many in lifetime. Muscle and bone degeneration has also been observed in individuals exposed to microgravity and in unloading conditions. C2C12 myoblst cells are able to form myotubes, and myofibers and these cells have been employed for muscle regeneration purposes and in myogenic regeneration and transplantation studies. We exposed C2C12 cells in an random position machine to simulate microgravity and study the energy and the biochemical challenges associated with this treatment. Simulated microgravity exposed C2C12 cells maintain positive proliferation indices and delay the differentiation process for several days. On the other hand this treatment significantly alters many of the biochemical and the metabolic characteristics of the cell cultures including calcium homeostasis. Recent data have shown that these perturbations are due to the inhibition of the ryanodine receptors on the membranes of intracellular calcium stores. We were able to reverse this perturbations treating cells with thapsigargin which prevents the segregation of intracellular calcium ions in the mitochondria and in the sarco/endoplasmic reticula. Calcium homeostasis appear a key target of microgravity exposure. In conclusion, in this study we reported some of the effects induced by the exposure of C2C12 cell cultures to simulated microgravity. The promising information obtained is of fundamental importance in the hope to employ this protocol in the field of regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Regeneración/efectos de la radiación , Ingravidez/efectos adversos , Animales , Señalización del Calcio/efectos de la radiación , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/efectos de la radiación , Humanos , Ratones , Desarrollo de Músculos/efectos de la radiación , Fibras Musculares Esqueléticas/efectos de la radiación , Mioblastos/metabolismo , Mioblastos/efectos de la radiación , Simulación de Ingravidez/efectos adversos
7.
Life Sci ; 232: 116610, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254584

RESUMEN

AIMS: The aim of this study was the characterization of the in vitro cytotoxic properties of a recently isolated diterpene compound, 7ß-acetoxy-20-hydroxy-19,20-epoxyroyleanone (compound 1), extracted from Salvia corrugata, versus human cell lines. MAIN METHODS: We used as model study immortalized breast epithelial cells MCF10A and two ERBB2+ breast cancer (BCa) cell lines, SKBR-3 and BT474. Compound 1 was isolated by methanolic extraction from regenerated shoots of Salvia corrugata Vahl, and purified by high pressure liquid chromatography (HPLC). Flow cytometry (FCM) was employed for cell cycle, apoptosis and reactive oxygen species (ROS) analysis. Cell morphology was assessed by immunofluorescence and transmission electron microscopy (TEM). KEY FINDINGS: Compound 1 inhibited cell survival of all breast cell lines. In particular, compound 1 promoted cell cycle arrest in the G0/G1 phase and apoptosis along with impairment of the mitochondrial function, which was reflected in a gross alteration of the mitochondrial network structure. Furthermore, we also detected a potent activation of the ERK1/2 kinase, which suggested the induction of reactive oxygen species (ROS). Partial rescue of survival obtained with n-acetylcysteine (NAC) when coadminstered with compound 1 further supported a contribution of ROS mediated mechanisms to the growth-arrest and proapoptotic activity of compound 1 in both BCa cell lines. ROS production was indeed confirmed in SKBR-3. SIGNIFICANCE: Our findings show that compound 1 has a cytotoxic activity against both human normal and cancer cell lines derived from breast epithelia, which is mediated by ROS generation and mitochondrial damage.


Asunto(s)
Mama/efectos de los fármacos , Diterpenos/farmacología , Medicamentos Herbarios Chinos/farmacología , Células Epiteliales/efectos de los fármacos , Apoptosis/efectos de los fármacos , Mama/citología , Mama/metabolismo , Canfanos , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diterpenos/aislamiento & purificación , Células Epiteliales/metabolismo , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Panax notoginseng , Especies Reactivas de Oxígeno/metabolismo , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Salvia miltiorrhiza
8.
Int J Obes (Lond) ; 43(1): 189-201, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30082752

RESUMEN

BACKGROUND: Lipocalin-2 (LCN2) is widely expressed in the organism with pleiotropic roles. In particular, its overexpression correlates with tissue stress conditions including inflammation, metabolic disorders, chronic diseases and cancer. OBJECTIVES: To assess the effects of systemic LCN2 overexpression on adipose tissue and glucose metabolism. SUBJECTS: Eighteen-month-old transgenic mice with systemic LCN2 overexpression (LCN2-Tg) and age/sex-matched wild-type mice. METHODS: Metabolic cages; histology and real-time PCR analysis; glucose and insulin tolerance tests; ELISA; flow cytometry; microPET and serum analysis. RESULTS: LCN2-Tg mice were smaller compared to controls but they ate (P = 0.0156) and drank (P = 0.0057) more and displayed a higher amount of visceral adipose tissue. Furthermore, LCN2-Tg mice with body weight ≥20 g showed adipocytes with a higher cell area (P < 0.0001) and altered expression of genes involved in adipocyte differentiation and inflammation. In particular, mRNA levels of adipocyte-derived Pparg (P ≤ 0.0001), Srebf1 (P < 0.0001), Fabp4 (P = 0.056), Tnfa (P = 0.0391), Il6 (P = 0.0198), and Lep (P = 0.0003) were all increased. Furthermore, LCN2-Tg mice displayed a decreased amount of basal serum insulin (P = 0.0122) and a statistically significant impaired glucose tolerance and insulin sensitivity consistent with Slc2a2 mRNA (P ≤ 0.0001) downregulated expression. On the other hand, Insr mRNA (P ≤ 0.0001) was upregulated and correlated with microPET analysis that demonstrated a trend in reduced whole-body glucose consumption and MRGlu in the muscles and a significantly reduced MRGlu in brown adipose tissue (P = 0.0247). Nevertheless, an almost nine-fold acceleration of hexokinase activity was observed in the LCN2-Tg mice liver compared to controls (P = 0.0027). Moreover, AST and ALT were increased (P = 0.0421 and P = 0.0403, respectively), which indicated liver involvement also demonstrated by histological staining. CONCLUSIONS: We show that LCN2 profoundly impacts adipose tissue size and function and glucose metabolism, suggesting that LCN2 should be considered as a risk factor in ageing for metabolic disorders leading to obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Envejecimiento/metabolismo , Glucosa/metabolismo , Lipocalina 2/metabolismo , Tejido Adiposo/patología , Envejecimiento/fisiología , Animales , Antropometría , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Ratones Transgénicos
9.
J Exp Clin Cancer Res ; 36(1): 154, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29100552

RESUMEN

BACKGROUND: ERBB2 is overexpressed in up to 20-30% of human breast cancers (BCs), and it is associated with aggressive disease. Trastuzumab (Tz), a humanized monoclonal antibody, improves the prognosis associated with ERBB2-amplified BCs. However, the development of resistance remains a significant challenge. Carnosic acid (CA) is a diterpene found in rosemary and sage, endowed with anticancer properties. In this in vitro study, we have investigated whether Tz and CA have cooperative effects on cell survival of ERBB2 overexpressing (ERBB2+) cells and whether CA might restore Tz sensitivity in Tz-resistant cells. METHODS: We have studied BC cell migration and survival upon CA and Tz treatment. In particular, migration ability was assessed by transwell assay while cell survival was assessed by MTT assay. In addition, we have performed cell cycle and apoptosis analysis by high-resolution DNA flow cytometry and annexin-V, resazurin and sytox blue staining by flow cytometry, respectively. The expression of proteins involved in cell cycle progression, ERBB2 signaling pathway, and autophagy was evaluated by immunoblot and immunofluorescence analysis. Cellular structures relevant to the endosome/lysosome and autophagy pathways have been studied by immunofluorescence and transmission electron microscopy. RESULTS: We report that, in ERBB2+ BC cells, CA reversibly enhances Tz inhibition of cell survival, cooperatively inhibits cell migration and induces cell cycle arrest in G0/G1. These events are accompanied by ERBB2 down-regulation, deregulation of the PI3K/AKT/mTOR signaling pathway and up-regulation of both CDKN1A/p21WAF1 and CDKN1B/p27KIP1. Furthermore, we have demonstrated that CA impairs late autophagy and causes derangement of the lysosomal compartment as shown by up-regulation of SQSTM1/p62 and ultrastructural analysis. Accordingly, we have found that CA restores, at least in part, sensitivity to Tz in SKBR-3 Tz-resistant cell line. CONCLUSIONS: Our data demonstrate the cooperation between CA and Tz in inhibiting cell migration and survival of ERBB2+ BC cells that warrant further studies to establish if CA or CA derivatives may be useful in vivo in the treatment of ERBB2+ cancers.


Asunto(s)
Abietanos/farmacología , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Células MCF-7 , Regulación hacia Arriba/efectos de los fármacos
10.
J Cell Physiol ; 232(11): 3077-3087, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28004388

RESUMEN

Lipocalin-2 (LCN2) is a member of the lipocalin family whose expression is modulated in several conditions, including cell differentiation, innate immunity, stress, and cancer. Although it is known that it is expressed in bone, its function in this tissue remains poorly studied. To this end, we took advantage of transgenic mice lines that expressed LCN2 driven by a bone specific type I collagen (LCN2-Tg). In the bone marrow (BM) of LCN2-Tg mice we observed an increased number of phenotypically long-term hematopoietic stem cells (LT-HSC) that also displayed a higher proliferation rate compared to wild-type controls (Wt). Furthermore, hematopoietic progenitor cells, obtained from LCN2-Tg BM showed an increased clonogenic capacity compared to those obtained from LCN2-Tg spleen, a higher concentration of serum erythropoietin and a higher number of mature erythrocytes in the peripheral blood of old LCN2-Tg animals compared to aged-matched wt. The findings of a combined increase in the BM of the LCN2-Tg mice of SDF-1, SCF, and TIMP-1 levels along with the reduction of both MMP-9 activity and cathepsin K concentration may explain the observed effects on the HSC compartment. This study shows that LCN2 overexpression in bones modifies the BM microenvironment via modulation of the expression of key secreted factors and cytokines, which in turn regulate the HSC niche behavior enhancing both HSC homing in young mice and erythrocytes production in older mice.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Lipocalina 2/metabolismo , Osteoblastos/metabolismo , Comunicación Paracrina , Cráneo/citología , Nicho de Células Madre , Células 3T3 , Factores de Edad , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Proliferación Celular , Quimiotaxis , Colágeno Tipo I/genética , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Eritrocitos/metabolismo , Genotipo , Lipocalina 2/genética , Ratones , Ratones Transgénicos , Péptido Hidrolasas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Transducción de Señal
11.
Phytomedicine ; 23(7): 679-85, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235706

RESUMEN

BACKGROUND: Carnosic acid (CA) is a diterpenoid found in Rosmarinus officinalis L. and Salvia officinalis L. as well as in many other Lamiaceae. This compound is reported to have antioxidant and antimicrobial properties. In addition, a number of reports showed that CA has a cytotoxic activity toward several cancer cell lines. PURPOSE: The aim of this study was to establish whether CA has any specific antiproliferative effect toward human glioblastoma (GBM) cells and to analyze the molecular mechanisms involved. METHODS: We evaluated cell survival by MTT assay, apoptosis and DNA content by flow cytometry, protein expression and phosphorylation by immunoblot analyses. RESULTS: Our results showed that CA inhibited cell survival on both normal astrocytes and GBM cells. In GBM cells, in particular, CA caused an early G2 block, a reduction in the percentage of cells expressing Ki67, an enhanced expression of p21(WAF) and induced apoptosis. Furthermore, we showed that CA promoted proteasomal degradation of several substrate proteins, including Cyclin B1, retinoblastoma (RB), SOX2, and glial fibrillary acid protein (GFAP), whereas MYC levels were not modified. In addition, CA dramatically reduced the activity of CDKs. CONCLUSION: In conclusion, our findings strongly suggest that CA promotes a profound deregulation of cell cycle control and reduces the survival of GBM cells via proteasome-mediated degradation of Cyclin B1, RB and SOX2.


Asunto(s)
Abietanos/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ciclina B1/efectos de los fármacos , Glioblastoma/patología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteína de Retinoblastoma/efectos de los fármacos , Factores de Transcripción SOXB1/efectos de los fármacos , Astrocitos/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Ciclina B1/genética , ADN de Neoplasias/biosíntesis , ADN de Neoplasias/genética , Relación Dosis-Respuesta a Droga , Fase G2/efectos de los fármacos , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Proteína de Retinoblastoma/genética , Factores de Transcripción SOXB1/genética
12.
Haematologica ; 99(1): 131-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162786

RESUMEN

In this study, we analyzed the influence of mesenchymal stromal cells derived from lymph nodes of non-Hodgkin's lymphomas, on effector functions and differentiation of Vdelta (δ)2 T lymphocytes. We show that: i) lymph-node mesenchymal stromal cells of non-Hodgkin's lymphoma inhibit NKG2D-mediated lymphoid cell killing, but not rituximab-induced antibody-dependent cell-mediated cytotoxicity, exerted by Vδ2 T lymphocytes; ii) pre-treatment of mesenchymal stromal cells with the aminobisphosphonates pamidronate or zoledronate can rescue lymphoma cell killing via NKG2D; iii) this is due to inhibition of transforming growth factor-ß and increase in interleukin-15 production by mesenchymal stromal cells; iv) aminobisphosphonate-treated mesenchymal stromal cells drive Vδ2 T-lymphocyte differentiation into effector memory T cells, expressing the Thelper1 cytokines tumor necrosis factor-α and interferon-γ. In non-Hodgkin's lymphoma lymph nodes, Vδ2 T cells were mostly naïve; upon co-culture with autologous lymph-node mesenchymal stromal cells exposed to zoledronate, the percentage of terminal differentiated effector memory Vδ2 T lymphocytes increased. In all non-Hodgkin's lymphomas, low or undetectable transcription of Thelper1 cytokines was found. In diffused large B-cell lymphomas and in a group of follicular lymphoma, transcription of transforming growth factor ß and interleukin-10 was enhanced compared to non-neoplastic lymph nodes. Thus, in non-Hodgkin lymphomas mesenchymal stromal cells interfere with Vδ2 T-lymphocyte cytolytic function and differentiation to Thelper1 and/or effector memory cells, depending on the prominent in situ cytokine milieu. Aminobisphosphonates, acting on lymph-node mesenchymal stromal cells, can push the balance towards Thelper1/effector memory and rescue the recognition and killing of lymphoma cells through NKG2D, sparing rituximab-induced antibody-dependent cell-mediated cytotoxicity.


Asunto(s)
Difosfonatos/farmacología , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Diferenciación Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Citotoxicidad Inmunológica , Expresión Génica , Humanos , Memoria Inmunológica , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Linfoma no Hodgkin/genética , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
13.
PLoS One ; 8(8): e72028, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015201

RESUMEN

Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.


Asunto(s)
Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Citocinas/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Suspensión Trasera , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Sarcolema/metabolismo , Vuelo Espacial
14.
J Cell Physiol ; 228(11): 2210-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23606520

RESUMEN

Lipocalin-2 (LCN2) is a protein largely expressed in many tissues, associated with different biological phenomena such as cellular differentiation, inflammation and cancer acting as a survival/apoptotic signal. We found that LCN2 was expressed during osteoblast differentiation and we generated transgenic (Tg) mice over-expressing LCN2 in bone. Tg mice were smaller and presented bone microarchitectural changes in both endochondral and intramembranous bones. In particular, Tg bones displayed a thinner layer of cortical bone and a decreased trabecular number. Osteoblast bone matrix deposition was reduced and osteoblast differentiation was slowed-down. Differences were also observed in the growth plate of young transgenic mice where chondrocyte displayed a more immature phenotype and a lower proliferation rate. In bone marrow cell cultures from transgenic mice, the number of osteoclast progenitors was increased whereas in vivo it was increased the number of mature osteoclasts expressing tartrate-resistant acid phosphatase (TRAP). Finally, while osteoprotegerin (OPG) levels remained unchanged, the expression of the conventional receptor activator of nuclear factor-κB ligand (RANKL) and of the IL-6 was enhanced in Tg mice. In conclusion, we found that LCN2 plays a role in bone development and turnover having both a negative effect on bone formation, by affecting growth plate development and interfering with osteoblast differentiation, and a positive effect on bone resorption by enhancing osteoclast compartment.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Desarrollo Óseo , Remodelación Ósea , Fémur/metabolismo , Lipocalinas/metabolismo , Proteínas Oncogénicas/metabolismo , Fosfatasa Ácida/metabolismo , Animales , Animales Recién Nacidos , Tamaño Corporal , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Fémur/diagnóstico por imagen , Fémur/patología , Placa de Crecimiento/diagnóstico por imagen , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Interleucina-6/metabolismo , Isoenzimas/metabolismo , Lipocalina 2 , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Radiografía , Receptores de Superficie Celular/metabolismo , Reproducibilidad de los Resultados , Fosfatasa Ácida Tartratorresistente , Transgenes/genética
15.
PLoS One ; 7(3): e32361, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22412864

RESUMEN

Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants.


Asunto(s)
Eritrocitos/metabolismo , Estrés Oxidativo , Ingravidez/efectos adversos , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Índices de Eritrocitos , Membrana Eritrocítica/metabolismo , Eritrocitos/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción/efectos de los fármacos , Factores de Tiempo
16.
Blood ; 119(6): 1479-89, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22167753

RESUMEN

Herein we describe that in classic Hodgkin lymphomas (cHL, n = 25) the lymph node (LN) stroma displayed in situ high levels of transcription and expression of the disulfide-isomerase ERp5 and of the disintegrin-metalloproteinase ADAM10, able to shed the ligands for NKG2D (NKG2D-L) from the cell membrane. These enzymes were detected both in LN mesenchymal stromal cells (MSCs) and in Reed-Sternberg (RS) cells; in addition, MIC-A and ULBP3 were present in culture supernatants of LN MSCs or RS cells. NKG2D-L-negative RS cells could not be killed by CD8(+)αßT or γδT cells; tumor cell killing was partially restored by treating RS cells with valproic acid, which enhanced NKG2D-L surface expression. Upon coculture with LN MSCs, CD8(+)αßT and γδT cells strongly reduced their cytolytic activity against NKG2D-L(+) targets; this seems to be the result of TGF-ß, present at the tumor site, produced in vitro by LN MSCs and able to down-regulate the expression of NKG2D on T lymphocytes. In addition, CD8(+)αßT and γδT cells from the lymph nodes of cHL patients, cocultured in vitro with LN MSCs, underwent TGF-ß-mediated down regulation of NKG2D. Thus, in cHL the tumor microenvironment is prone to inhibit the development of an efficient antitumor response.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedad de Hodgkin/metabolismo , Ganglios Linfáticos/metabolismo , Proteínas de la Membrana/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Adulto , Anciano , Secretasas de la Proteína Precursora del Amiloide/genética , Células Cultivadas , Técnicas de Cocultivo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/inmunología , Humanos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Masculino , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Proteína Disulfuro Isomerasas/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Células de Reed-Sternberg/inmunología , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Adulto Joven
17.
Cytokine ; 51(1): 47-52, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20362461

RESUMEN

Lipocalin-2 (LCN2) is a member of the lipocalin family, small secreted proteins functioning as modulators of many different physiological processes including cell differentiation, proliferation and apoptosis. LCN2 expression is also up-regulated in several pathological conditions, including inflammation and cancer. LCN2 synthesis has been described in epithelia, bone and cells of the immune system. Despite its wide expression the role of LCN2 remains to be fully elucidated. To better understand the role of this lipocalin in the bone/bone marrow system we generated transgenic mice over-expressing LCN2 specifically in bone under the control of a type I collagen promoter. In the bone marrow of these transgenic mice we observed an increased expression of SDF-1 that correlated with an increased number of CD34+/CXCR4+ (SDF-1 receptor) cells. To some extent, this appeared due to an enhanced cell proliferation rate. The higher level of the factor synthesis and the increased number of cells expressing its receptor was maintained during animal aging. Our results show that LCN2 could play a role in determining the number of CD34+/CXCR4+ precursor cells in the bone marrow thus contributing to the control of the bone marrow microenvironment.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Huesos/citología , Huesos/metabolismo , Quimiocina CXCL12/metabolismo , Lipocalinas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas de Fase Aguda/genética , Animales , Antígenos CD34/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Bromodesoxiuridina/metabolismo , Separación Celular , Quimiocina CXCL12/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hierro/metabolismo , Lipocalina 2 , Lipocalinas/sangre , Lipocalinas/genética , Ratones , Ratones Transgénicos , Proteínas Oncogénicas/sangre , Proteínas Oncogénicas/genética , Unión Proteica
18.
Gene ; 382: 79-87, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16945490

RESUMEN

Here we describe a novel small polypeptide expressed in chick embryo and mouse adult tissues referred to as Rolly Protein (Rolp), expressed at the highest levels in tibial cartilage and lung respectively. Investigating its putative role in cartilage differentiation we found that its expression is restricted to proliferative stages consistently with a decreased proliferation rate observed in Rolp-silenced cells. Additional functional studies demonstrate that inhibition of Rolp expression causes a transcription modulation of genes involved in apoptosis. The results here provided strongly suggest an active role of Rolp in the control of cell proliferation and apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Proliferación Celular , Proteínas/genética , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Secuencia de Bases , Células Cultivadas , Embrión de Pollo , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis/genética , ADN Complementario/genética , Expresión Génica , Silenciador del Gen , Leucina Zippers/genética , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Proteínas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
19.
Int J Mol Med ; 18(4): 601-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964411

RESUMEN

The RET gene is tightly regulated at the transcriptional level during embryo development, however in vitro experiments in cultured cells have failed to clarify the molecular mechanism of cell-type specificity of RET promoter activity. Therefore, we have generated transgenic mice in which the LacZ reporter gene is controlled by murine Ret promoter sequences to clarify in an in vivo model how this transcriptional regulation is achieved. We describe here the results of reporter gene expression in mice in which the transgene contained 380- and 1962-bp sequence upstream of the ATG start codon, derived from the mouse Ret promoter region, fused to the beta-galactosidase coding sequence. Transgenic mice showed well-defined patterns of beta-galactosidase staining obtained with both transgenes, suggesting that they were able per se to direct the reporter gene expression in specific districts, such as cranial ganglia, dorsal root ganglia, the heart and the kidney, partially recapitulating the profile of the endogenous Ret gene. In particular, proper expression in the developing excretory system seemed quite significant when considering that the appropriate regulation was obtained with a very short, 380 bp, fragment of Ret 5' flanking sequence.


Asunto(s)
Región de Flanqueo 5'/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-ret/genética , Animales , Nervios Craneales/embriología , Nervios Craneales/metabolismo , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/metabolismo , Femenino , Corazón Fetal/embriología , Corazón Fetal/metabolismo , Ganglios/embriología , Ganglios/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Inmunohistoquímica , Riñón/embriología , Riñón/metabolismo , Operón Lac/genética , Masculino , Ratones , Ratones Transgénicos , Páncreas/embriología , Páncreas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
20.
J Bone Miner Res ; 19(10): 1678-88, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15355563

RESUMEN

UNLABELLED: The role of Hedgehogs (Hh) in murine skeletal development was studied by overexpressing human Sonic Hedgehog (SHH) in chondrocytes of transgenic mice using the collagen II promoter/enhancer. Overexpression caused a lethal craniorachischisis with major alterations in long bones because of defects in chondrocyte differentiation. INTRODUCTION: Hedgehogs (Hhs) are a family of secreted polypeptides that play important roles in vertebrate development, controlling many critical steps of cell differentiation and patterning. Skeletal development is affected in many different ways by Hhs. Genetic defects and anomalies of Hhs signaling pathways cause severe abnormalities in the appendicular, axial, and cranial skeleton in man and other vertebrates. MATERIALS AND METHODS: Genetic manipulation of mouse embryos was used to study in vivo the function of SHH in skeletal development. By DNA microinjection into pronuclei of fertilized oocytes, we have generated transgenic mice that express SHH specifically in chondrocytes using the cartilage-specific collagen II promoter/enhancer. Transgenic skeletal development was studied at different embryonic stages by histology. The expression pattern of specific chondrocyte molecules was studied by immunohistochemistry and in situ hybridization. RESULTS: Transgenic mice died at birth with severe craniorachischisis and other skeletal defects in ribs, sternum, and long bones. Detailed analysis of long bones showed that chondrocyte differentiation was blocked at prehypertrophic stages, hindering endochondral ossification and trabecular bone formation, with specific defects in different limb segments. The growth plate was highly disorganized in the tibia and was completely absent in the femur and humerus, leading to skeletal elements entirely made of cartilage surrounded by a thin layer of bone. In this cartilage, chondrocytes maintained a columnar organization that was perpendicular to the bone longitudinal axis and directed toward its outer surface. The expression of SHH receptor, Patched-1 (Ptc1), was greatly increased in all cartilage, as well as the expression of parathyroid hormone-related protein (PTHrP) at the articular surface; while the expression of Indian Hedgehog (Ihh), another member of Hh family that controls the rate of chondrocyte maturation, was greatly reduced and restricted to the displaced chondrocyte columns. Transgenic mice also revealed the ability of SHH to upregulate the expression of Sox9, a major transcription factor implicated in chondrocyte-specific gene expression, in vivo and in vitro, acting through the proximal 6.8-kb-long Sox9 promoter. CONCLUSION: Transgenic mice show that continuous expression of SHH in chondrocytes interferes with cell differentiation and growth plate organization and induces high levels and diffuse expression of Sox9 in cartilaginous bones.


Asunto(s)
Condrocitos/citología , Placa de Crecimiento/anomalías , Proteínas del Grupo de Alta Movilidad/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Desarrollo Óseo , Huesos/anomalías , Cartílago/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Proteínas Hedgehog , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Defectos del Tubo Neural/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular , Factor de Transcripción SOX9 , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA