Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Mutagénesis , Mutación , Humanos , Animales , Aductos de ADN/metabolismo , Rayos Ultravioleta , ADN/metabolismo , ADN/química , ADN/genética , Alquilación , ADN Polimerasa Dirigida por ADN/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717857

RESUMEN

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Animales , Procesos Estocásticos , Ratones , ADN/metabolismo , ADN/genética , Humanos , Alquilación , Mutación , Reparación por Escisión
3.
Nat Genet ; 56(5): 913-924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627597

RESUMEN

How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, during single mitoses and at single-strand resolution. To distinguish between chronic (reactive oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we microfluidically separate pairs of sister cells from the first mitosis following burst UV damage. Strikingly, UV mutations manifest as sister-specific events, revealing mirror-image mutation phasing genome-wide. In contrast, ROS mutagenesis in transcribed regions is reduced strand agnostically. Successive rounds of genome replication over persisting UV damage drives multiallelic variation at CC dinucleotides. Finally, we show that mutation phasing can be resolved to single strands across the entire genome of liver tumors from F1 mice. This strategy can be broadly used to distinguish the contributions of overlapping cancer relevant mutational processes.


Asunto(s)
Daño del ADN , Reparación del ADN , Mitosis , Mutagénesis , Rayos Ultravioleta , Animales , Ratones , Reparación del ADN/genética , Rayos Ultravioleta/efectos adversos , Daño del ADN/genética , Mitosis/genética , Especies Reactivas de Oxígeno/metabolismo , Mutación , Humanos
4.
Nature ; 627(8004): 636-645, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418875

RESUMEN

A hallmark of cancer is the avoidance of immune destruction. This process has been primarily investigated in locally advanced or metastatic cancer1-3; however, much less is known about how pre-malignant or early invasive tumours evade immune detection. Here, to understand this process in early colorectal cancers (CRCs), we investigated how naive colon cancer organoids that were engineered in vitro to harbour Apc-null, KrasG12D and Trp53-null (AKP) mutations adapted to the in vivo native colonic environment. Comprehensive transcriptomic and chromatin analyses revealed that the endoderm-specifying transcription factor SOX17 became strongly upregulated in vivo. Notably, whereas SOX17 loss did not affect AKP organoid propagation in vitro, its loss markedly reduced the ability of AKP tumours to persist in vivo. The small fraction of SOX17-null tumours that grew displayed notable interferon-γ (IFNγ)-producing effector-like CD8+ T cell infiltrates in contrast to the immune-suppressive microenvironment in wild-type counterparts. Mechanistically, in both endogenous Apc-null pre-malignant adenomas and transplanted organoid-derived AKP CRCs, SOX17 suppresses the ability of tumour cells to sense and respond to IFNγ, preventing anti-tumour T cell responses. Finally, SOX17 engages a fetal intestinal programme that drives differentiation away from LGR5+ tumour cells to produce immune-evasive LGR5- tumour cells with lower expression of major histocompatibility complex class I (MHC-I). We propose that SOX17 is a transcription factor that is engaged during the early steps of colon cancer to orchestrate an immune-evasive programme that permits CRC initiation and progression.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Evasión Inmune , Factores de Transcripción SOXF , Animales , Humanos , Ratones , Adenoma/inmunología , Adenoma/patología , Linfocitos T CD8-positivos/inmunología , Cromatina/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Interferón gamma/inmunología , Organoides/inmunología , Organoides/patología , Factores de Transcripción SOXF/metabolismo , Microambiente Tumoral/inmunología , Mutación , Endodermo/metabolismo , Progresión de la Enfermedad
5.
Nature ; 626(8000): 799-807, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326615

RESUMEN

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Células Endoteliales , Estudio de Asociación del Genoma Completo , Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Predisposición Genética a la Enfermedad/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Polimorfismo de Nucleótido Simple , Epigenómica , Transducción de Señal/genética , Herencia Multifactorial
6.
Nature ; 626(7997): 194-206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096902

RESUMEN

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Asunto(s)
Endonucleasas , Elementos de Nucleótido Esparcido Largo , ADN Polimerasa Dirigida por ARN , Transcripción Reversa , Humanos , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , ARN/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Cristalografía por Rayos X , ADN/biosíntesis , ADN/genética , Inmunidad Innata , Interferones/biosíntesis
7.
Cancer Discov ; 13(12): 2532-2547, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698949

RESUMEN

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE: The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 µL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Elementos de Nucleótido Esparcido Largo , Proteínas/genética , Biomarcadores de Tumor , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
8.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36747644

RESUMEN

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. While proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore the potential of ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 M) ORF1p concentrations in patient plasma samples across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multi-analyte panel, and provides early therapeutic response monitoring in gastric and esophageal cancers. Together, these observations nominate ORF1p as a multi-cancer biomarker with potential utility for disease detection and monitoring.

9.
Methods Mol Biol ; 2607: 215-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36449166

RESUMEN

During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Retroelementos , Sustancias Macromoleculares , Células Madre de Carcinoma Embrionario , ARN
10.
J Am Coll Surg ; 236(1): 126-134, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519916

RESUMEN

INTRODUCTION: Infiltrating tumor border configuration (ITBC) portends a poor prognosis compared with pushing tumor border configuration (PTBC) in colorectal cancer. The tumor and its surrounding immune microenvironment of tumor border configuration is not well-characterized. We aim to elucidate the differences in expression of molecular markers between the 2 groups using tissue microarray (TMA). STUDY DESIGN: Immunohistochemistry was performed on TMAs of surgical pathology specimens obtained from colorectal cancer patients consecutively operated at our institution from 2004 to 2015. TMAs were stained for immune cells (CD8, FOXP3, LAG3, PU1, CD163, and PDL1); HLA II, beta 2 microglobulin, and HC10 on tumor cells; BRAFV600E mutation; and DNA mismatch repair proteins (MMR) status. Patients who received neoadjuvant therapy were excluded. RESULTS: There were 646 tumors with ITBC and 310 tumors with PTBC. There was a significantly lower expression (p < 0.05) of immune components, namely CD8, FOXP3, LAG3, PU1, PDL1 immune cells, and Beta-2 Microglobulin on tumor cells in the tumors with ITBC compared with PTBC, except CD163 immune cells, and HC10 and HLAII on tumor cells. Tumors with ITBC were less likely to be associated with BRAFV600E mutations and deficient MMR proteins (p < 0.001). On analyzing MMR-proficient tumors separately, we could not find any difference in the expression of any molecular marker (including BRAF), except a lower expression of PDL1 immune cells in tumors with ITBC (p < 0.001). CONCLUSIONS: Colorectal tumors with ITBC are associated with a generalized low immune microenvironment and low rates of BRAFV600E mutation compared with tumors with PTBC. However, the molecular expression of tumor border configuration seems confounded by the MMR molecular signature. MMR-proficient colorectal tumors with ITBC are associated with a lower expression of only PDL1 immune cells among all immune markers examined.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Microambiente Tumoral , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Factores de Transcripción Forkhead/metabolismo , Inmunohistoquímica , Mutación , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
Ann Surg Oncol ; 29(12): 7372-7382, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35917013

RESUMEN

BACKGROUND: Extramural vascular invasion (EMVI) is a known poor prognostic factor in colorectal carcinoma; however, its molecular basis has not been defined. This study aimed to assess the expression of molecular markers in EMVI positive colorectal carcinoma to understand their tumor microenvironment. METHODS: Immunohistochemistry was performed on tissue microarrays of surgically resected colorectal cancer specimens for immunological markers, and BRAFV600E mutation (and on the tissue blocks for mismatch repair proteins). Automated quantification was used for CD8, LAG3, FOXP3, PU1, and CD163, and manual quantification was used for PDL1, HLA I markers (beta-2 microglobulin, HC10), and HLA II. The Wilcoxon rank-sum test was used to compare EMVI positive and negative tumors. A logistic regression model was fitted to assess the predictive effect of biomarkers on EMVI. RESULTS: There were 340 EMVI positive and 678 EMVI negative chemo naïve tumors. PDL1 was barely expressed on tumor cells (median 0) in the entire cohort. We found a significantly lower expression of CD8, LAG3, FOXP3, PU1 cells, PDL1 positive macrophages, and beta-2 microglobulin on tumor cells in the EMVI positive subset (p ≤ 0.001). There was no association of BRAFV600E or deficient mismatch repair proteins (dMMR) with EMVI. PU1 (OR 0.8, 0.7-0.9) and low PDL1 (OR 1.6, 1.1-2.3) independently predicted EMVI on multivariate logistic regression among all biomarkers examined. CONCLUSION: There is a generalized blunting of immune response in EMVI positive colorectal carcinoma, which may contribute to a worse prognosis. Tumor-associated macrophages seem to play the most significant role in determining EMVI.


Asunto(s)
Neoplasias Colorrectales , Neoplasias del Recto , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Factores de Transcripción Forkhead , Humanos , Inmunohistoquímica , Invasividad Neoplásica/patología , Pronóstico , Neoplasias del Recto/patología , Microambiente Tumoral
14.
Cancer Discov ; 12(6): 1462-1481, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35320348

RESUMEN

Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE: Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa Dirigida por ARN , Animales , Antivirales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ADN , Humanos , Interferones/metabolismo , Lamivudine , Estadios del Ciclo de Vida , ARN , ADN Polimerasa Dirigida por ARN/metabolismo , Proteína p53 Supresora de Tumor/genética
15.
Nature ; 602(7898): 623-631, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140396

RESUMEN

The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Células Germinativas , Mutagénesis , Neoplasias , Animales , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Células Germinativas/metabolismo , Humanos , Mutagénesis/genética , Mutación , Neoplasias/genética , Ribonucleótidos/genética
16.
Cancer Res ; 82(8): 1548-1559, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074757

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy of the bile ducts within the liver characterized by high levels of genetic heterogeneity. In the context of such genetic variability, determining which oncogenic mutations drive ICC growth has been difficult, and developing modes of patient stratification and targeted therapies remains challenging. Here we model the interactions between rare mutations with more common driver genes and combine in silico analysis of patient data with highly multiplexed in vivo CRISPR-spCas9 screens to perform a functional in vivo study into the role genetic heterogeneity plays in driving ICC. Novel tumor suppressors were uncovered, which, when lost, cooperate with the RAS oncoprotein to drive ICC growth. Focusing on a set of driver mutations that interact with KRAS to initiate aggressive, sarcomatoid-type ICC revealed that tumor growth relies on Wnt and PI3K signaling. Pharmacologic coinhibition of Wnt and PI3K in vivo impeded ICC growth regardless of mutational profile. Therefore, Wnt and PI3K activity should be considered as a signature by which patients can be stratified for treatment independent of tumor genotype, and inhibitors of these pathways should be levied to treat ICC. SIGNIFICANCE: This work shows that, despite significant genetic heterogeneity, intrahepatic cholangiocarcinoma relies on a limited number of signaling pathways to grow, suggesting common therapeutic vulnerabilities across patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Heterogeneidad Genética , Humanos , Fosfatidilinositol 3-Quinasas/genética
17.
Clin Cancer Res ; 28(6): 1167-1179, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785582

RESUMEN

PURPOSE: There is an unmet need for identifying novel biomarkers in Barrett's esophagus that could stratify patients with regards to neoplastic progression. We investigate the expression patterns of extracellular matrix (ECM) molecules in Barrett's esophagus and Barrett's esophagus-related neoplasia, and assess their value as biomarkers for the diagnosis of Barrett's esophagus-related neoplasia and to predict neoplastic progression. EXPERIMENTAL DESIGN: Gene-expression analyses of ECM matrisome gene sets were performed using publicly available data on human Barrett's esophagus, Barrett's esophagus-related dysplasia, esophageal adenocarcinoma (ADCA) and normal esophagus. Immunohistochemical expression of basement membrane (BM) marker agrin (AGRN) and p53 was analyzed in biopsies of Barrett's esophagus-related neoplasia from 321 patients in three independent cohorts. RESULTS: Differential gene-expression analysis revealed significant enrichment of ECM matrisome gene sets in dysplastic Barrett's esophagus and ADCA compared with controls. Loss of BM AGRN expression was observed in both Barrett's esophagus-related dysplasia and ADCA. The mean AGRN loss in Barrett's esophagus glands was significantly higher in Barrett's esophagus-related dysplasia and ADCA compared with non-dysplastic Barrett's esophagus (NDBE; P < 0.001; specificity = 82.2% and sensitivity = 96.4%). Loss of AGRN was significantly higher in NDBE samples from progressors compared with non-progressors (P < 0.001) and identified patients who progressed to advanced neoplasia with a specificity of 80.2% and sensitivity of 54.8%. Moreover, the combination of AGRN loss and abnormal p53 staining identified progression to Barrett's esophagus-related advanced neoplasia with a specificity and sensitivity of 86.5% and 58.7%. CONCLUSIONS: We highlight ECM changes during Barrett's esophagus progression to neoplasia. BM AGRN loss is a novel diagnostic biomarker that can identify patients with NDBE at increased risk of developing advanced neoplasia.


Asunto(s)
Esófago de Barrett , Neoplasias Esofágicas , Agrina/genética , Agrina/metabolismo , Esófago de Barrett/diagnóstico , Esófago de Barrett/genética , Esófago de Barrett/patología , Biomarcadores/análisis , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Humanos , Proteína p53 Supresora de Tumor
18.
Am J Surg Pathol ; 45(8): 1127-1137, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34115673

RESUMEN

Sarcoma diagnosis has become increasingly complex, requiring a combination of morphology, immunohistochemistry, and molecular studies to derive specific diagnoses. We evaluated the role of anchored multiplex polymerase chain reaction-based gene fusion assay in sarcoma diagnostics. Between 2015 and 2018, bone and soft tissue sarcomas with fusion assay results were compared with the histologic diagnosis. Of 143 sarcomas tested for fusions, 43 (30%) had a detectable fusion. In review, they could be classified into 2 main categories: (1) 31 tumors with concordant morphologic and fusion data; and (2) 12 tumors where the fusion panel identified an unexpected rearrangement that played a significant role in classification. The overall concordance of the fusion assay results with morphology/immunohistochemistry or alternate confirmatory molecular studies was 83%. Collectively, anchored multiplex polymerase chain reaction-based solid fusion assay represents a robust means of detecting targeted fusions with known and novel partners. The predictive value of the panel is highest in tumors that show a monomorphic cell population, round cell tumors, as well as tumors rich in inflammatory cells. However, with an increased ability to discover fusions of uncertain significance, it remains essential to emphasize that the diagnosis of bone and soft tissue neoplasms requires the integration of morphology and immunohistochemical profile with these molecular methods, for accurate diagnosis and optimal clinical management of sarcomas.


Asunto(s)
Neoplasias Óseas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Sarcoma/diagnóstico , Neoplasias de los Tejidos Blandos/diagnóstico , Adolescente , Adulto , Anciano , Neoplasias Óseas/genética , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Adulto Joven
19.
Nat Commun ; 12(1): 3199, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045463

RESUMEN

In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to incomplete assessment of a cancer's mutational profile when analyzing a single tumor biopsy. In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that levels of heterogeneity in genetic biomarkers vary between patients but that gene expression signatures representative of the tumor microenvironment are more consistent. Across nine patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated with the number of metastatic lesions in which the mutation is detected and use this result to derive a clonality threshold to classify truncal and non-truncal driver alterations with reasonable specificity. In contrast, mutation truncality is more often incorrectly assigned when studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample relative to that of single tissue samples when treating patients with metastatic cancer.


Asunto(s)
Autopsia/métodos , ADN Tumoral Circulante/genética , Análisis Mutacional de ADN/métodos , Neoplasias/diagnóstico , Microambiente Tumoral/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Quimioradioterapia Adyuvante , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Heterogeneidad Genética , Humanos , Masculino , Terapia Neoadyuvante , Neoplasias/sangre , Neoplasias/patología , Neoplasias/terapia , Mutación Puntual , RNA-Seq , Valores de Referencia , Sensibilidad y Especificidad , Análisis Espacial , Factores de Tiempo , Secuenciación del Exoma
20.
Clin Imaging ; 76: 46-52, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33549919

RESUMEN

PURPOSE: The purpose of this study was to determine if CT and MRI features can accurately differentiate mucinous cystic neoplasms (MCNs) from simple liver cysts and to compare accuracy of CT and MRI in detecting these features. METHODS: Eighty-four surgically treated lesions with pre-operative CT or MRI were evaluated by two abdominal radiologists for upstream biliary dilatation, perfusional change, internal hemorrhage, thin septations, thick septations/nodularity, lobar location, and number of coexistent liver cysts. Odds ratios, sensitivities, specificities, and positive and negative predictive values were calculated for association of each feature with MCNs. RESULTS: Of 84 liver lesions, 13 (15%) were MCNs, all in women, and 71 (85%) were simple cysts, in 59 women and 12 men. Thick septations/nodularity, upstream biliary dilation, thin septations, internal hemorrhage, perfusional change, and fewer than 3 coexistent liver cysts were more frequent in MCNs than in simple cysts. The combination of thick septations/nodularity and at least one additional associated feature showed high specificity for MCNs (94-98%). MRI detected significant associations of biliary dilation, thin septations, and hemorrhage/debris with MCNs which CT did not. CONCLUSION: Surgically treated MCNs of the liver with preoperative imaging occurred at our institution only in women. Thick septations or nodularity, biliary dilation, thin septations, internal hemorrhage or debris, perfusional change, and fewer than 3 coexistent liver cysts are features that help differentiate MCNs from simple cysts. MRI has advantages over CT in detecting these features.


Asunto(s)
Quistes , Hepatopatías , Neoplasias Hepáticas , Neoplasias Pancreáticas , Quistes/diagnóstico por imagen , Femenino , Humanos , Hepatopatías/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA