Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Neurodegener ; 18(1): 59, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649100

RESUMEN

BACKGROUND: Amyloid-related imaging abnormalities (ARIA) have been identified as the most common and serious adverse events resulting from pathological changes in the cerebral vasculature during several recent anti-amyloid-ß (Aß) immunotherapy trials. However, the precise cellular and molecular mechanisms underlying how amyloid immunotherapy enhances cerebral amyloid angiopathy (CAA)-mediated alterations in vascular permeability and microhemorrhages are not currently understood. Interestingly, brain perivascular macrophages have been implicated in regulating CAA deposition and cerebrovascular function however, further investigations are required to understand how perivascular macrophages play a role in enhancing CAA-related vascular permeability and microhemorrhages associated with amyloid immunotherapy. METHODS: In this study, we examined immune responses induced by amyloid-targeting antibodies and CAA-induced microhemorrhages using histology and gene expression analyses in Alzheimer's disease (AD) mouse models and primary culture systems. RESULTS: In the present study, we demonstrate that anti-Aß (3D6) immunotherapy leads to the formation of an antibody immune complex with vascular amyloid deposits and induces the activation of CD169+ perivascular macrophages. We show that macrophages activated by antibody mediated Fc receptor signaling have increased expression of inflammatory signaling and extracellular matrix remodeling genes such as Timp1 and MMP9 in vitro and confirm these key findings in vivo. Finally, we demonstrate enhanced vascular permeability of plasma proteins and recruitment of inflammatory monocytes around vascular amyloid deposits, which are associated with hemosiderin deposits from cerebral microhemorrhages, suggesting the multidimensional roles of activated perivascular macrophages in response to Aß immunotherapy. CONCLUSIONS: In summary, our study establishes a connection between Aß antibodies engaged at CAA deposits, the activation of perivascular macrophages, and the upregulation of genes involved in vascular permeability. However, the implications of this phenomenon on the susceptibility to microhemorrhages remain to be fully elucidated. Further investigations are warranted to determine the precise role of CD169 + perivascular macrophages in enhancing CAA-mediated vascular permeability, extravasation of plasma proteins, and infiltration of immune cells associated with microhemorrhages.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Animales , Ratones , Monocitos , Placa Amiloide , Péptidos beta-Amiloides , Macrófagos , Proteínas Amiloidogénicas
2.
Int J Mol Sci ; 20(24)2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847365

RESUMEN

Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with the accumulation of Aß, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis has been associated with an active immune response and perivascular deposition of hyperphosphorylated tau. Despite the fact that in Alzheimer's disease (AD) a major focus of research has been the understanding of the connection between parenchymal amyloid plaques, tau aggregates in the form of neurofibrillary tangles (NFTs), and immune activation, the contribution of tau and neuroinflammation to neurodegeneration associated with CAA remains understudied. In this review, we discussed the existing evidence regarding the amyloid diversity in CAA and its relation to tau pathology and immune response, as well as the possible contribution of molecular and cellular mechanisms, previously associated with parenchymal amyloid in AD and AD-related dementias, to the pathogenesis of CAA. The detailed understanding of the "amyloid-tau-neuroinflammation" axis in the context of CAA could open the opportunity to develop therapeutic interventions for dementias associated with CAA that are currently being proposed for AD and AD-related dementias.


Asunto(s)
Amiloide/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Inflamación/metabolismo , Proteínas tau/metabolismo , Animales , Humanos
3.
Exp Eye Res ; 182: 74-84, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30905716

RESUMEN

CB2R receptors have demonstrated beneficial effects in wound healing in several models. We therefore investigated a potential role of CB2R receptors in corneal wound healing. We examined the functional contribution of CB2R receptors to the course of wound closure in an in vivo murine model. We additionally examined corneal expression of CB2R receptors in mouse and the consequences of their activation on cellular signaling, migration and proliferation in cultured bovine corneal epithelial cells (CECs). Using a novel mouse model, we provide evidence that corneal injury increases CB2R receptor expression in cornea. The CB2R agonist JWH133 induces chemorepulsion in cultured bovine CECs but does not alter CEC proliferation. The signaling profile of CB2R activation is activating MAPK and increasing cAMP accumulation, the latter perhaps due to Gs-coupling. Lipidomic analysis in bovine cornea shows a rise in acylethanolamines including the endocannabinoid anandamide 1 h after injury. In vivo, CB2R deletion and pharmacological block result in a delayed course of wound closure. In summary, we find evidence that CB2R receptor promoter activity is increased by corneal injury and that these receptors are required for the normal course of wound closure, possibly via chemorepulsion.


Asunto(s)
Lesiones de la Cornea/metabolismo , Receptores de Cannabinoides/fisiología , Cicatrización de Heridas/fisiología , Animales , Cannabinoides/farmacología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Quimiotaxis/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Epitelio Corneal/metabolismo , Ratones , Receptores de Cannabinoides/metabolismo , Transducción de Señal/fisiología
4.
Acta Neuropathol Commun ; 7(1): 26, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808415

RESUMEN

Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with accumulation of Aß, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis is accompanied by significant tau pathology. However, the contribution of tau to neurodegeneration associated to CAA remains to be determined. We used a mouse model of Familial Danish Dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature, to characterize the contribution of tau to neurodegeneration associated to CAA. We performed histological and biochemical assays to establish tau modifications associated with CAA in conjunction with cell-based and electrophysiological assays to determine the role of tau in the synaptic dysfunction associated with ADan. We demonstrated that ADan aggregates induced hyperphosphorylation and misfolding of tau. Moreover, in a mouse model for CAA, we observed tau oligomers closely associated to astrocytes in the vicinity of vascular amyloid deposits. We finally determined that the absence of tau prevents synaptic dysfunction induced by ADan oligomers. In addition to demonstrating the effect of ADan amyloid on tau misfolding, our results provide compelling evidence of the role of tau in neurodegeneration associated with ADan-CAA and suggest that decreasing tau levels could be a feasible approach for the treatment of CAA.


Asunto(s)
Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Proteínas tau/deficiencia , Proteínas tau/genética , Secuencia de Aminoácidos , Amiloidosis/genética , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Catarata/genética , Catarata/metabolismo , Catarata/patología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Angiopatía Amiloide Cerebral/patología , Sordera/genética , Sordera/metabolismo , Sordera/patología , Demencia/genética , Demencia/metabolismo , Demencia/patología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA