Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biol Direct ; 19(1): 69, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164777

RESUMEN

A substantive body of evidence has demonstrated the significant roles of circular RNA (circRNA) in cancer. However, the contribution of dysregulated circRNAs to ovarian cancer (OC) remains elusive. We aim to elucidate the critical roles and mechanisms of hsa_circ_0020093, which was demonstrated to be downregulated in OC tissues in our previous study. In this study, we confirmed the decreased expression of hsa_circ_0020093 in OC tissues and cell lines and demonstrated the negative correlation between its expression and FIGO stage, abdominal implantation and CA125 level of OC patients. Through gain and loss of function studies, we confirmed the inhibitory role of hsa_circ_0020093 in ovarian tumor growth in vitro and in vivo. Mechanistically, based on the peri-nuclear accumulation of hsa_circ_0020093, we discovered the interaction between hsa_circ_0020093 and the mitochondrial protein LRPPRC by RNA pull-down, mass spectrometry, RNA Binding Protein Immunoprecipitation. As a result, qRT-PCR and transmission electron microscopy results showed that the mitochondria mRNA expression and mitochondria abundance were decreased upon hsa_circ_0020093-overexpression. Meanwhile, we also unearthed the hsa_circ_0020093/miR-107/LATS2 axis in OC according to RNA-sequencing, RIP and luciferase reporter assay data. Furthermore, LRPPRC and LATS2 are both reported as the upstream regulators of YAP, our study also studied the crosstalk between hsa_circ_0020093, LRPPRC and miR-107/LATS2, and unearthed the up-regulation of phosphorylated YAP in hsa_circ_0020093-overexpressing OC cells and xenograft tumors. Collectively, our study indicated the novel mechanism of hsa_circ_0020093 in suppressing OC progression through both hsa_circ_0020093/LRPPRC and hsa_circ_0020093/miR-107/LATS2 axes, providing a potential therapeutic target for OC patients.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , ARN Circular , Transducción de Señal , Proteínas Supresoras de Tumor , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos
2.
Circ Heart Fail ; 17(3): e010569, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38410978

RESUMEN

BACKGROUND: Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS: A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS: Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS: Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Miocarditis , Ratones , Animales , Interleucina-6/metabolismo , Quinasas Janus/metabolismo , Insuficiencia Cardíaca/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Miocitos Cardíacos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cardiomegalia/patología , Miocarditis/genética , Miocarditis/prevención & control , Inflamación/patología , Modelos Animales de Enfermedad , Fibrosis
3.
Aging (Albany NY) ; 15(22): 13384-13410, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38015723

RESUMEN

A ketogenic diet (KD) and ß-hydroxybutyrate (ßOHB) have been widely reported as effective therapies for metabolic diseases. ß-Hydroxybutyrate dehydrogenase 1 (BDH1) is the rate-limiting enzyme in ketone metabolism. In this study, we examined the BDH1-mediated ßOHB metabolic pathway in the pathogenesis of diabetic kidney disease (DKD). We found that BDH1 is downregulated in the kidneys in DKD mouse models, patients with diabetes, and high glucose- or palmitic acid-induced human renal tubular epithelial (HK-2) cells. BDH1 overexpression or ßOHB treatment protects HK-2 cells from glucotoxicity and lipotoxicity by inhibiting reactive oxygen species overproduction. Mechanistically, BDH1-mediated ßOHB metabolism activates NRF2 by enhancing the metabolic flux of ßOHB-acetoacetate-succinate-fumarate. Moreover, in vivo studies showed that adeno-associated virus 9-mediated BDH1 renal expression successfully reverses fibrosis, inflammation, and apoptosis in the kidneys of C57 BKS db/db mice. Either ßOHB supplementation or KD feeding could elevate the renal expression of BDH1 and reverse the progression of DKD. Our results revealed a BDH1-mediated molecular mechanism in the pathogenesis of DKD and identified BDH1 as a potential therapeutic target for DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Humanos , Ratones , Ácido 3-Hidroxibutírico/farmacología , Antioxidantes/uso terapéutico , Nefropatías Diabéticas/metabolismo , Riñón/patología , Factor 2 Relacionado con NF-E2/genética , Hidroxibutirato Deshidrogenasa/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166813, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37488049

RESUMEN

Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-ß-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Quinasas Quinasa Quinasa PAM , Animales , Ratones , Cardiomegalia/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 574-586, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37057923

RESUMEN

Ovarian cancer is the second leading cause of death in women with gynecological malignancy in China. Circular RNAs are a class of noncoding regulatory RNAs reported to be involved in cancer development and progression. Previous studies, including our own, have indicated that hsa_circ_0007444 is downregulated in ovarian cancer tissues. This study aims to elucidate the function and mechanism of hsa_circ_0007444 in ovarian cancer progression. The expression of hsa_circ_0007444 is determined by quantitative real-time PCR (qRT-PCR). Cell proliferation, invasion, migration and apoptosis are examined by cell counting-kit 8 (CCK-8), transwell and flow cytometry assays. Tumor growth and metastasis are assessed in vivo using Balb/c nude mouse xenograft model and tail vein injection model. And the mechanism of action of hsa_circ_0007444 is analysed by RNA-binding protein immunoprecipitation (RIP), luciferase reporter and rescue assays. hsa_circ_0007444 is downregulated in ovarian cancer tissues and cell lines compared with that in normal ovarian tissues and normal epithelial cell line. Gain- and loss-of-function results indicate that hsa_circ_0007444 inhibits cell proliferation, invasion, migration and increases cell apoptosis of ovarian cancer cells in vitro, and inhibits tumor growth and lung metastasis in vivo. Mechanistically, hsa_circ_0007444 can interact with AGO2 and sponge miR-23a-3p, thereby upregulating DICER1 expression, which is an important tumor suppressor in ovarian cancer. And miR-23a-3p mimics can rescue the inhibitory effect of hsa_circ_0007444 on ovarian cancer cell proliferation, invasion and migration. Therefore, hsa_circ_0007444 can inhibit ovarian cancer progression through the hsa_circ_0007444/miR-23a-3p/DICER1 axis.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias Ováricas/genética , Ribonucleasa III , ARN Circular/genética
6.
Acta Pharmacol Sin ; 44(7): 1366-1379, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36721009

RESUMEN

Previous studies show that notoginsenoside R1 (NG-R1), a novel saponin isolated from Panax notoginseng, protects kidney, intestine, lung, brain and heart from ischemia-reperfusion injury. In this study we investigated the cardioprotective mechanisms of NG-R1 in myocardial ischemia/reperfusion (MI/R) injury in vivo and in vitro. MI/R injury was induced in mice by occluding the left anterior descending coronary artery for 30 min followed by 4 h reperfusion. The mice were treated with NG-R1 (25 mg/kg, i.p.) every 2 h for 3 times starting 30 min prior to ischemic surgery. We showed that NG-R1 administration significantly decreased the myocardial infarction area, alleviated myocardial cell damage and improved cardiac function in MI/R mice. In murine neonatal cardiomyocytes (CMs) subjected to hypoxia/reoxygenation (H/R) in vitro, pretreatment with NG-R1 (25 µM) significantly inhibited apoptosis. We revealed that NG-R1 suppressed the phosphorylation of transforming growth factor ß-activated protein kinase 1 (TAK1), JNK and p38 in vivo and in vitro. Pretreatment with JNK agonist anisomycin or p38 agonist P79350 partially abolished the protective effects of NG-R1 in vivo and in vitro. Knockdown of TAK1 greatly ameliorated H/R-induced apoptosis of CMs, and NG-R1 pretreatment did not provide further protection in TAK1-silenced CMs under H/R injury. Overexpression of TAK1 abolished the anti-apoptotic effect of NG-R1 and diminished the inhibition of NG-R1 on JNK/p38 signaling in MI/R mice as well as in H/R-treated CMs. Collectively, NG-R1 alleviates MI/R injury by suppressing the activity of TAK1, subsequently inhibiting JNK/p38 signaling and attenuating cardiomyocyte apoptosis.


Asunto(s)
Ginsenósidos , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Ginsenósidos/metabolismo , Miocardio , Miocitos Cardíacos , Apoptosis
7.
J Ovarian Res ; 15(1): 58, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550610

RESUMEN

BACKGROUND: Circular RNA (circRNA), a class of RNA with a covalent closed circular structure that widely existed in serum and plasma, has been considered an ideal liquid biopsy marker in many diseases. In this study, we employed microarray and qRT-PCR to evaluate the potential circulating circRNAs with diagnostic efficacy in ovarian cancer. METHODS: We used microarray to explore the circRNA expression profile in ovarian cancer patients' plasma and quantitative real-time (qRT)-PCR approach to assessing the candidate circRNA's expression. Then the receiver operating characteristic (ROC) curve was employed to analyze the diagnostic values of candidate circRNAs. The diagnostic model circCOMBO was a combination of hsa_circ_0003972 and hsa_circ_0007288 built by binary logistic regression. Then bioinformatic tools were used to predict their potential mechanisms. RESULTS: Hsa_circ_0003972 and hsa_circ_0007288 were downregulated in ovarian cancer patients' plasma, tissues, and cell lines, comparing with the controls. Hsa_circ_0003972 and hsa_circ_0007288 exhibited diagnostic values with the Area Under Curve (AUC) of 0.724 and 0.790, respectively. circCOMBO showed a better diagnostic utility (AUC: 0.781), while the combination of circCOMBO and carbohydrate antigen 125 (CA125) showed the highest diagnostic value (AUC: 0.923). Furthermore, the higher expression level of hsa_circ_0007288 in both plasma and ovarian cancer tissues was associated with lower lymph node metastasis potential in ovarian cancer. CONCLUSIONS: Our results revealed that hsa_circ_0003972 and hsa_circ_0007288 may serve as novel circulating biomarkers for ovarian cancer diagnosis.


Asunto(s)
Neoplasias Ováricas , ARN Circular , Biomarcadores , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , ARN/metabolismo , ARN Circular/genética , Curva ROC
8.
Vet Sci ; 9(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202315

RESUMEN

Sparganosis is a neglected zoonotic parasitic disease that poses huge threats to humans worldwide. Snakes play an important role in sparganosis transmission because they are the most common second intermediate hosts for Spirometra parasites. However, the population genetics of Spirometra isolates from snakes is currently not well studied in China. The present study was performed to explore the molecular characteristics and phylogenetic analysis of Spirometra tapeworms from different species of snakes in Hunan Province. This study obtained 49 Spirometra isolates from 15 geographical areas in Hunan Province, Central China. Subsequently, the 18S and 28S ribosomal DNA (rDNA) fragments were amplified from the isolated parasites, and their sequences were analyzed to assess their genetic diversity. Phylogenetic analyses were performed using the maximum likelihood algorithm. The results showed that sequence variations among these isolates were 0-2.3% and 0-0.1% for 18S and 28S rDNA, respectively. The phylogenetic analysis showed that all Spirometra isolates from Hunan Province were clustered into the same branch with Spirometra erinaceieuropaei isolated from other areas (China, Vietnam, Australia). Moreover, the phylogenetic trees revealed that Spirometra is closely related to Adenocephalus, Pyramicocephalus, Ligula, Dibothriocephalus, Schistocephalus, and Diphyllobothrium. The Spirometra isolates of different hosts/regions in Hunan Province are not host segregated or geographically isolated, and support for the taxonomic status of Spirometra tapeworms in China has been added. These results provide reference values for future accurate identification and taxonomic status of Spirometra tapeworms in China.

9.
Cell Death Discov ; 8(1): 49, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115498

RESUMEN

In 2020, a group of experts officially suggested metabolic dysfunction associated with fatty liver disease "MAFLD" as a more appropriate overarching term than NAFLD, indicating the key role of metabolism in fatty liver disease. Bdh1, as the rate-limiting enzyme of ketone metabolism, acts as an important metabolic regulator in liver. However, the role of Bdh1 in MAFLD is unclear. In this study, we used the transgenic db/db mice as a MAFLD mouse model and observed the downregulated expression of Bdh1 in fatty liver. In addition, expression of Bdh1 was also reduced by palmitic acid (PA) treatment in LO2 cells. Bdh1 knockdown led to ROS overproduction and ROS-induced inflammation and apoptosis in LO2 cells, while Bdh1 overexpression protected LO2 cells from lipotoxicity by inhibiting ROS overproduction. Mechanistically, Bdh1-mediated ßOHB metabolism inhibits ROS overproduction by activation of Nrf2 through enhancement of metabolic flux composed of ßOHB-AcAc-succinate-fumarate. Notably, adeno-associated virus (AAV)-mediated Bdh1 overexpression successfully reversed the hepatic function indexes, fibrosis, inflammation, and apoptosis in fatty livers from db/db mice. In conclusion, our study revealed a Bdh1-mediated molecular mechanism in pathogenesis of metabolic dysfunction related liver disease and identified Bdh1 as a novel potential therapeutic target for MAFLD.

10.
Cancer Biother Radiopharm ; 37(7): 580-588, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34242057

RESUMEN

Background: The authors' previous study showed that the long noncoding RNA CTD-2589M5.4 was significantly upregulated in multidrug-resistant ovarian cancer cells. However, the role of CTD-2589M5.4 in the progression of ovarian cancer remains unclear. The purpose of this current study was to illuminate the biological function and possible mechanism of CTD-2589M5.4 in ovarian cancer development. Materials and Methods: The expression of CTD-2589M5.4 was examined via real-time quantitative PCR in primary ovarian cancer tissues (POCTs) and ovarian cancer cell lines. The biological function of CTD-2589M5.4 was analyzed via CCK-8 proliferation, wound healing, transwell, and flow cytometry assays in CTD-2589M5.4-overexpressed/silenced and control ovarian cancer cells. The mechanism of CTD-2589M5.4 function in ovarian cancer progression was analyzed utilizing high-throughput RNA-sequencing, Kyoto Encyclopedia of Genes and Genomes analysis, qRT-PCR, Western blot, and rescue experiments. Results: CTD-2589M5.4 expression was decreased in the POCTs and ovarian cancer cells compared with the normal ovarian tissues (p < 0.05) and normal ovarian epithelial cells (p < 0.05). Overexpression of CTD-2589M5.4 inhibited the proliferation, invasion, and migration of ovarian cancer cells, while knockdown of CTD-2589M5.4 had the opposite effect. Furthermore, a total of 750 and 233 genes were notably upregulated and downregulated, respectively, in the CTD-2589M5.4-overexpressed A2780 cells, while the extracellular matrix (ECM)-receptor interaction pathway was significantly downregulated. In addition, overexpression of fibronectin 1 significantly abrogated the tumor suppressive function of CTD-2589M5.4. Conclusions: This study demonstrated that CTD-2589M5.4 could inhibit ovarian cancer cell proliferation, invasion, and migration, at least partially by way of downregulating the ECM-receptor interaction pathway, therefore providing a potential therapeutic target for the prevention and/or treatment of ovarian cancer.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/patología , ARN Largo no Codificante/metabolismo
11.
Cell Mol Life Sci ; 78(19-20): 6557-6583, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34459951

RESUMEN

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.


Asunto(s)
ADN/genética , Animales , Replicación del ADN/genética , Diseño de Fármacos , Epigénesis Genética/genética , G-Cuádruplex , Humanos , Telómero/genética , Transcripción Genética/genética
12.
Front Oncol ; 11: 691317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307155

RESUMEN

Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.

13.
Am J Transl Res ; 13(4): 3246-3253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017495

RESUMEN

OBJECTIVE: To assess the influence of PDCA-based nursing management model on the quality of life (QOL) and complications of patients with acute leukemia undergoing chemotherapy. METHODS: In this study, we randomly divided 118 patients with acute leukemia undergoing chemotherapy in our hospital into an observation group (n=59) and a control group (n=59). The control group was implemented routine nursing while the observation group was implemented PDCA-based nursing management. The anxiety, depression, QOL, cancer fatigue, total complication rate, sleep quality, and patients' satisfaction were compared between the two groups. RESULTS: The SAS and SDS scores of the observation group were significantly lower than those of the control group (P<0.05). The scores of physical function, general health, social function, emotional role, and mental health of the observation group were superior to those of the control group (all P<0.05). The 4 dimensions of behavior/severity, sense, emotion and cognition/mood in the observation group were significantly lower than those of the control group (all P<0.05). The incidence of complications such as nausea and vomiting, infection, bleeding, phlebitis, bone marrow suppression and mucositis in the observation group was significantly lower than that in the control group (P<0.05). The scores of sleep quality in the observation group were significantly lower than those of the control group (all P<0.05). The observation group's satisfaction with PDCA-based nursing management was markedly higher than that of the control group (P<0.05). CONCLUSION: The PDCA-based nursing management model applied to patients with acute leukemia undergoing chemotherapy has shown good effects, which can improve depression, anxiety, cancer fatigue, sleep quality and QOL. It also significantly reduced the incidence of complications and improved patients' satisfaction, which was worth of clinical application.

14.
Nat Commun ; 12(1): 294, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436633

RESUMEN

Earth's habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth's late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.

15.
Cancer Manag Res ; 12: 11085-11093, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173341

RESUMEN

PURPOSE: Platinum resistance is a primary barrier to improving the survival rate of ovarian cancer. The relationship between mtDNA somatic mutations and response to platinum-based chemotherapy in ovarian cancer has not been well clarified. PATIENTS AND METHODS: Here, we employed the next-generation sequencing (NGS) platform to identify mtDNA mutations of the unrelated high-grade serous ovarian cancer (HGSOC) patients. RESULTS: We identified 569 germline variants and 28 mtDNA somatic mutations, and found the platinum-sensitive relapsed HGSOC patients had more synonymous mutations while the platinum-resistant relapsed HGSOC patients had more missense mutations in the mtDNA somatic mutations. Meanwhile, we found that the HGSOC patients who harbored heteroplasmic pathogenic mtDNA somatic mutations had significantly higher prevalence of both platinum-resistance and relapse than those without (80.0% versus 16.7%, p=0.035). Additionally, we observed that the tumor tissues had significantly higher lactate-to-pyruvate (L/P) ratio than the paired nontumor tissues (p<0.001), and L/P ratio of tumors with any heteroplasmic pathogenic mtDNA mutations was significantly higher than that of the tumors free of pathogenic mtDNA mutations (p=0.025). CONCLUSION: Our findings indicate that these heteroplasmic pathogenic mtDNA somatic mutations may cause decreased respiratory chain activity and lead to the metabolism remodeling that seem to be beneficial for progression of both platinum-based chemotherapy resistance and relapse.

16.
Technol Cancer Res Treat ; 19: 1533033819901117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32167027

RESUMEN

PURPOSE: To establish an efficient new risk index for screening patients with endometrial cancer from patients with abnormal vaginal bleeding or discharge. METHOD: A total of 254 patients with abnormal vaginal bleeding or discharge were included in this study. Several candidate markers, including HE4, CA125, CA199, CA153, AFP, CEA, d-dimer, and fibrinogen, were employed. A new risk index for endometrial cancer screening was established by binary logistic regression. The diagnostic value of the candidate markers and the new risk index were assessed by a receiver operating characteristic curve, sensitivity, and specificity. RESULTS: The most valuable diagnostic indicator for endometrial cancer was HE4, followed by d-dimer and then fibrinogen (area under the receiver operating characteristic curve: HE4 = 0.794, d-dimer = 0.717, fibrinogen = 0.690). The new risk index was superior to a single application of markers and a widely used combination (HE4 and CA125). At the ideal cutoff level, the sensitivity and specificity were 91.34% and 70.08%, respectively. In addition, only patients without organic disease served as controls, which further increase its performance (area under the receiver operating characteristic curve = 0.932, sensitivity = 94.49%, and specificity = 77.42%). CONCLUSIONS: The new risk index combining HE4, d-dimer, fibrinogen, and CA199 was the ideal combination for the screening of endometrial cancer. As a simple, rapid, nondestructive detection method, the new risk index is worth promotion in clinical practice, especially in primary medical institutions.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/sangre , Biomarcadores de Tumor/sangre , Neoplasias Endometriales/diagnóstico , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Fibrinógeno/metabolismo , Hemorragia Uterina/patología , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/metabolismo , Adulto , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Endometriales/sangre , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Curva ROC , Medición de Riesgo
17.
J Biol Chem ; 295(51): 17646-17658, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454004

RESUMEN

RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3'-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5'-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.


Asunto(s)
ADN/metabolismo , Escherichia coli/enzimología , G-Cuádruplex , RecQ Helicasas/metabolismo , Reparación del ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , RecQ Helicasas/química , RecQ Helicasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
18.
Int J Biochem Cell Biol ; 112: 8-17, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31026505

RESUMEN

BACKGROUND: With the development of next-generation sequencing (NGS), thousands of circular RNAs (circRNAs) have been found. Many circRNAs have been verified to play vital roles in carcinogenesis. However, whether circRNAs engage in the development and progression of ovarian cancer remains to be clarified. METHODS: We analyzed circRNA expression profiling in epithelial ovarian cancer (EOC) and normal ovarian tissues (NOT) using NGS and validated six randomly selected circRNAs via quantitative real-time-PCR (qRT-PCR), reverse-transcription PCR (RT-PCR) and Sanger sequencing after RNase treatment. CircHIPK3, the most abundant circRNA in our sequencing data, was further knocked down by siRNA. The circHIPK3 function in proliferation, invasion, migration and apoptosis of ovarian cancer cells and normal ovarian epithelial cells was analyzed via cell counting-kit 8 (CCK8), wound healing, transwell and flow cytometry analyses after circHIPK3 was efficiently silenced. RESULTS: Altogether, we found 7333 circRNAs, of which 4505 (61.43%) were newly identified, 2431 were significantly upregulated and 3120 were remarkably downregulated. Six randomly selected differentially expressed circRNAs were examined in 18 EOC and 18 NOT. Furthermore, the results of RT-PCR and Sanger sequencing after RNase treatment confirmed head-to-tail back-splicing. Silencing of circHIPK3 promoted proliferation, migration, and invasion and inhibited apoptosis of ovarian cancer cells (A2780 and SKOV3) and normal ovarian epithelial cells (IOSE80). Additionally, the circHIPK3-miRNA-mRNA axis was predicted as the possible mechanism using bioinformatic approaches. CONCLUSIONS: We identified the circRNA expression profile in ovarian cancer tissues and further verified the existence and expression of six randomly selected differentially expressed circRNAs. Besides, we also found that circHIPK3 is an important regulator of ovarian cancer progression.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , ARN Circular/biosíntesis , ARN Neoplásico/biosíntesis , Adulto , Anciano , Línea Celular Tumoral , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ovario/patología , ARN Circular/genética , ARN Neoplásico/genética
19.
Int J Biochem Cell Biol ; 107: 53-61, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30543932

RESUMEN

BACKGROUND: Bioactive peptides existing in vivo have been considered as an important class of natural medicines for the treatment of diseases. Peptidome analysis of tissues and biofluids had provided important information about the differentially expressed bioactive peptides in vivo. METHODS: Here, we analyzed the peptidome of serous ovarian cancer tissue samples and normal ovarian epithelial tissue samples by mass spectrometry and further investigated the possible bioactive peptides that were differentially expressed. RESULTS: We identified 634 differentially expressed peptides, 508 of these peptides were highly abundant in serous ovarian cancer tissues, a result consistent with higher protease activity in ovarian cancer patients. The difference in preferred cleavage sites between the serous ovarian cancer tissues and normal ovarian epithelium indicated the characteristic peptidome of ovarian cancer and the nature of cancer-associated protease activity. Interestingly, KEGG pathway analysis of the peptide precursors indicated that the differentially regulated pathways in ovarian cancer are highly consistent with the pathways discovered in other cancers. Besides, we found that a proportion of the differentially expressed peptides are similar to the known immune-regulatory peptides and anti-bacterial peptides. Then we further investigated the function of the two down-regulated peptides in ovarian cancer cells and found that peptide P1DS significantly inhibited the invasion and migration of OVCAR3 and SKOV3 ovarian cancer cells. CONCLUSIONS: Our results are the first to identify the differentially expressed peptides between the serous ovarian cancer tissue and the normal ovarian epithelium. Our results indicate that bioactive peptides involved in tumorigenesis are existed in vivo.


Asunto(s)
Espectrometría de Masas , Neoplasias Ováricas/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
20.
Biomed Pharmacother ; 105: 1106-1116, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021347

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Authors. The authors have found that the Western Blot result of cyclin D1 in Figure 3C cannot be repeated using the same method and requested that their paper be retracted.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/fisiología , Marcación de Gen/métodos , MicroARNs/biosíntesis , Neoplasias del Cuello Uterino/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Femenino , Células HeLa , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Distribución Aleatoria , Neoplasias del Cuello Uterino/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA