Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Clin Microbiol Infect ; 30(4): 540-547, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160754

RESUMEN

OBJECTIVES: Currently, limited data exist regarding the pathological changes occurring during the incubation phase of SARS-CoV-2 infection. We utilized proteomic analysis to explore changes in the circulatory host response in individuals with SARS-CoV-2 infection before the onset of symptoms. METHODS: Participants were individuals from a randomized clinical trial of prophylaxis for COVID-19 in a workers' dormitory. Proteomic signatures of blood samples collected within 7 days before symptom onset (incubation group) were compared with those collected >21 days (non-incubation group) to derive candidate biomarkers of incubation. Candidate biomarkers were assessed by comparing levels in the incubation group with both infected individuals (positive controls) and non-infected individuals (negative controls). RESULTS: The study included men (mean age 34.2 years and standard deviation 7.1) who were divided into three groups: an incubation group consisting of 44 men, and two control groups-positive (n = 56) and negative (n = 67) controls. Through proteomic analysis, we identified 49 proteins that, upon pathway analyses, indicated an upregulation of the renin-angiotensin and innate immune systems during the virus incubation period. Biomarker analyses revealed increased concentrations of plasma angiotensin II (mean 731 vs. 139 pg/mL), angiotensin (1-7) (302 vs. 9 pg/mL), CXCL10 (423 vs. 85 pg/mL), CXCL11 (82.7 vs. 32.1 pg/mL), interferon-gamma (0.49 vs. 0.20 pg/mL), legumain (914 vs. 743 pg/mL), galectin-9 (1443 vs. 836 pg/mL), and tumour necrosis factor (20.3 vs. 17.0 pg/mL) during virus incubation compared with non-infected controls (all p < 0.05). Plasma angiotensin (1-7) exhibited a significant increase before the onset of symptoms when compared with uninfected controls (area under the curve 0.99, sensitivity 0.97, and specificity 0.99). DISCUSSION: Angiotensin (1-7) could play a crucial role in the progression of symptomatic COVID-19 infection, and its assessment could help identify individuals who would benefit from enhanced monitoring and early antiviral intervention.


Asunto(s)
COVID-19 , Adulto , Humanos , Masculino , COVID-19/diagnóstico , Interferón gamma , Proteómica , SARS-CoV-2
2.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33827945

RESUMEN

Immune memory represents the most efficient defense against invasion and transmission of infectious pathogens. In contrast to memory T and B cells, the roles of innate immunity in recall responses remain inconclusive. In this study, we identified a novel mouse spleen NK cell subset expressing NKp46 and NKG2A induced by intranasal influenza virus infection. These memory NK cells specifically recognize N-linked glycosylation sites on influenza hemagglutinin (HA) protein. Different from memory-like NK cells reported previously, these NKp46+ NKG2A+ memory NK cells exhibited HA-specific silence of cytotoxicity but increase of gamma interferon (IFN-γ) response against influenza virus-infected cells, which could be reversed by pifithrin-µ, a p53-heat shock protein 70 (HSP70) signaling inhibitor. During recall responses, splenic NKp46+ NKG2A+ NK cells were recruited to infected lung and modulated viral clearance of virus and CD8+ T cell distribution, resulting in improved clinical outcomes. This long-lived NK memory bridges innate and adaptive immune memory response and promotes the homeostasis of local environment during recall response.IMPORTANCE In this study, we demonstrate a novel hemagglutinin (HA)-specific NKp46+ NKG2A+ NK cell subset induced by influenza A virus infection. These memory NK cells show virus-specific decreased cytotoxicity and increased gamma interferon (IFN-γ) on reencountering the same influenza virus antigen. In addition, they modulate host recall responses and CD8 T cell distribution, thus bridging the innate immune and adaptive immune responses during influenza virus infection.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Memoria Inmunológica , Subtipo H1N1 del Virus de la Influenza A/inmunología , Células Asesinas Naturales/inmunología , Infecciones por Orthomyxoviridae/inmunología , Traslado Adoptivo , Animales , Antígenos Ly/análisis , Antígenos Ly/metabolismo , Benzotiazoles/farmacología , Linfocitos T CD8-positivos/inmunología , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Interferón gamma/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Subfamília C de Receptores Similares a Lectina de Células NK/análisis , Receptor 1 Gatillante de la Citotoxidad Natural/análisis , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Bazo/citología , Bazo/inmunología , Tolueno/análogos & derivados , Tolueno/farmacología
3.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795434

RESUMEN

Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections. IMPORTANCE: Multiple pattern recognition receptors work in synergy to sense viral RNA or proteins synthesized during influenza replication and mediate host responses for viral control. Well-orchestrated host responses may help to maintain the inflammatory response to minimize tissue damage while inducing an effective adaptive immune response for viral clearance. We identified that CLEC5A, a C-type lectin receptor which has previously been reported to mediate flavivirus-induced inflammatory responses, enhanced induction of proinflammatory cytokines and chemokines in myeloid cells after influenza infections. CLEC5A-deficient mice infected with influenza virus showed reduced inflammation in the lungs and improved survival compared to that of the wild-type mice despite comparable viral loads. The survival difference was more prominent at a lower dose of inoculum. Collectively, our results suggest that dampening CLEC5A-mediated inflammatory responses in myeloid cells reduces immunopathogenesis after influenza infections.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Lectinas Tipo C/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Superficie Celular/inmunología , Animales , Anticuerpos/farmacología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Regulación de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N1 del Virus de la Influenza A/inmunología , Interferón-alfa/genética , Interferón-alfa/inmunología , Lectinas Tipo C/antagonistas & inhibidores , Lectinas Tipo C/genética , Lentivirus/genética , Lentivirus/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/virología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Cultivo Primario de Células , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Análisis de Supervivencia , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA