Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Melanoma Res ; 33(5): 345-356, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467061

RESUMEN

Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Neoplasias de la Úvea , Adulto , Humanos , Línea Celular Tumoral , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neoplasias de la Úvea/genética
2.
Invest Ophthalmol Vis Sci ; 63(13): 14, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515935

RESUMEN

Purpose: Uveal melanoma (UM) is considered a rare disease; yet, it is the most common intraocular malignancy in adults. Although the primary tumor may be efficiently managed, more than 50% of patients with UM develop distant metastases. The mortality at the first year after diagnosis of metastatic UM has been estimated at 81%, and the poor prognosis has not improved in the past years due to the lack of effective therapies. Methods: In order to search for novel therapeutic possibilities for metastatic UM, we performed a small-scale screen of targeted drug combinations. We verified the targets of the tested compounds by western blotting and PCR and clarified the mechanism of action of the selected combinations by caspase 3 and 7 activity assay and flow cytometry. The best two combinations were tested in a mouse patient-derived xenograft (PDX) UM model as putative therapeutics for metastatic UM. Results: Combinations of the multitarget drug trabectedin with either the CK2/CLK double-inhibitor CX-4945 (silmitasertib) or the c-MET/TAM (TYRO3, Axl, MERTK) receptor inhibitors foretinib and cabozantinib demonstrated synergistic effects and induced apoptosis (relative caspase 3 and 7 activity increased up to 20.5-fold in UM cell lines). In the case of the combination of foretinib and cabozantinib, inhibition of the TAM receptors, but not c-Met, was essential to inhibit the growth of UM cells. Monotreatment with trabectedin inhibited tumor growth by 42%, 49%, and 35% in the MM26, MM309, and MM339 PDX mouse models, respectively. Conclusions: Trabectedin alone or in combination with cabozantinib inhibited tumor growth in PDX UM mouse models. Blocking of MERTK, rather than TYRO3, activity inhibited UM cell growth and synergized with trabectedin.


Asunto(s)
Neoplasias de la Úvea , Humanos , Ratones , Animales , Caspasa 3/metabolismo , Trabectedina/uso terapéutico , Tirosina Quinasa c-Mer , Línea Celular Tumoral , Neoplasias de la Úvea/patología
3.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139642

RESUMEN

The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.

4.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010941

RESUMEN

Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.

5.
Cancers (Basel) ; 14(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35804957

RESUMEN

Currently, no systemic treatment is approved as the standard of care for metastatic uveal melanoma (UM). mTOR has been evaluated as a drug target in UM. However, one of the main limitations is dose reduction due to adverse effects. The combination of everolimus with another targeted agent would allow the reduction of the dose of a single drug, thus widening the therapeutic window. In our study, we aimed to identify a synergistic combination with everolimus in order to develop a novel treatment option for metastatic UM. We exploited CRISPR-Cas9 synthetic lethality screening technology to search for an efficient combination. IGF1R and PRKDC and several other genes were identified as hits in the screen. We investigated the effect of the combination of everolimus with the inhibitors targeting IGF1R and DNA-PKcs on the survival of UM cell lines. These combinations synergistically slowed down cell growth but did not induce apoptosis in UM cell lines. These combinations were tested on PDX UM in an in vivo model, but we could not detect tumor regression. However, we could find significant activity of the dual DNA-PKcs/mTOR inhibitor CC-115 on PDX UM in the in vivo model.

6.
NPJ Breast Cancer ; 7(1): 140, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707097

RESUMEN

Reactivation of dormant cancer cells can lead to cancer relapse, metastasis, and patient death. Dormancy is a nonproliferative state and is linked to late relapse and death. No targeted therapy is currently available to eliminate dormant cells, highlighting the need for a deeper understanding and reliable models. Here, we thoroughly characterize the dormant D2.OR and ZR-75-1, and proliferative D2A1 breast cancer cell line models in vivo and/or in vitro, and assess if there is overlap between a dormant and a senescent phenotype. We show that D2.OR but not D2A1 cells become dormant in the liver of an immunocompetent model. In vitro, we show that D2.OR and ZR-75-1 cells in response to a 3D environment or serum-free conditions are growth-arrested in G1, of which a subpopulation resides in a 4NG1 state. The dormancy state is reversible and not associated with a senescence phenotype. This will aid future research on breast cancer dormancy.

7.
Pigment Cell Melanoma Res ; 34(1): 122-131, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32767816

RESUMEN

Targeting the MAPK signaling pathway has transformed the treatment of metastatic melanoma. CRISPR-Cas9 genetic screens provide a genome-wide approach to uncover novel genetic dependencies that might serve as therapeutic targets. Here, we analyzed recently reported CRISPR-Cas9 screens comparing data from 28 melanoma cell lines and 313 cell lines of other tumor types in order to identify fitness genes related to melanoma. We found an average of 1,494 fitness genes in each melanoma cell line. We identified 33 genes, inactivation of which specifically reduced the fitness of melanoma. This set of tumor type-specific genes includes established melanoma fitness genes as well as many genes that have not previously been associated with melanoma growth. Several genes encode proteins that can be targeted using available inhibitors. We verified that genetic inactivation of DUSP4 and PPP2R2A reduces the proliferation of melanoma cells. DUSP4 encodes an inhibitor of ERK, suggesting that further activation of MAPK signaling activity through its loss is selectively deleterious to melanoma cells. Collectively, these data present a resource of genetic dependencies in melanoma that may be explored as potential therapeutic targets.


Asunto(s)
Sistemas CRISPR-Cas , Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Técnicas de Inactivación de Genes/métodos , Genoma Humano , Melanoma/patología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Proteína Fosfatasa 2/antagonistas & inhibidores , Proliferación Celular , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Células Tumorales Cultivadas
8.
J Immunother Cancer ; 8(2)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32873723

RESUMEN

BACKGROUND: Immunotherapy of cancer is successful but tumor regression often is incomplete and followed by escape. Understanding the mechanisms underlying this acquired resistance will aid the development of more effective treatments. METHODS: We exploited a mouse model where tumor-specific therapeutic vaccination results in tumor regression, followed by local recurrence and resistance. In depth studies on systemic, local and tumor intrinsic changes were performed with flow and mass cytometry, immunohistochemistry, transcriptomics and several perturbation studies with inhibitors or agonistic antibodies in mice. Main findings were recapitulated in vaccinated patients. RESULTS: Full tumor regression and cure of tumor-bearing mice is dependent on the magnitude of the vaccine-induced T-cell response. Recurrence of tumors did not involve classical immune escape mechanisms, such as antigen-presentation alterations, immune checkpoint expression, resistance to killing or local immune suppression. However, the recurrent tumors displayed a changed transcriptome with alterations in p53, tumor necrosis factor-α and transforming growth factor-ß signaling pathways and they became immunologically cold. Remarkably, ex vivo cell-sorted recurrent tumors, directly reinjected in naïve hosts retained their resistance to vaccination despite a strong infiltration with tumor-specific CD8+ T cells, similar to that of vaccine-responsive tumors. The influx of inflammatory mature myeloid effector cells in the resistant tumors, however, was impaired and this turned out to be the underlying mechanisms as restoration of inflammatory myeloid cell infiltration reinstated the sensitivity of these refractory tumors to vaccination. Notably, impaired myeloid cell infiltration after vaccination was also associated with vaccine resistance in patients. CONCLUSION: An immunotherapy-induced disability of tumor cells to attract innate myeloid effector cells formed a major mechanism underlying immune escape and acquired resistance. These data not only stresses the importance of myeloid effector cells during immunotherapy but also demands for new studies to harness their tumoricidal activities.


Asunto(s)
Resistencia a Antineoplásicos/inmunología , Inmunoterapia/métodos , Células Mieloides/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
9.
J Med Genet ; 57(3): 203-210, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31704778

RESUMEN

BACKGROUND: A proportion of patients diagnosed with cutaneous melanoma reports a positive family history. Inherited variants in CDKN2A and several other genes have been shown to predispose to melanoma; however, the genetic basis of familial melanoma remains unknown in most cases. The objective of this study was to provide insight into the genetic basis of familial melanoma. METHODS: In order to identify novel melanoma susceptibility genes, whole exome sequencing (WES) analysis was applied in a Dutch family with melanoma. The causality of a candidate variant was characterised by performing cosegregation analysis in five affected family members using patient-derived tissues and digital droplet PCR analysis to accurately quantify mutant allele frequency. Functional in-vitro studies were performed to assess the pathogenicity of the candidate variant. RESULTS: Application of WES identified a rare, nonsense variant in the NEK11 gene (c.1120C>T, p.Arg374Ter), cosegregating in all five affected members of a Dutch family. NEK11 (NIMA-related Kinase 11) is involved in the DNA damage response, enforcing the G2/M cell cycle checkpoint. In a melanoma from a variant carrier, somatic loss of the wildtype allele of this putative tumour suppressor gene was demonstrated. Functional analyses showed that the NEK11 p.Arg374Ter mutation results in strongly reduced expression of the truncated protein caused by proteasomal degradation. CONCLUSION: The NEK11 p.Arg374Ter variant identified in this family leads to loss-of-function through protein instability. Collectively, these findings support NEK11 as a melanoma susceptibility gene.


Asunto(s)
Predisposición Genética a la Enfermedad , Melanoma/genética , Quinasas Relacionadas con NIMA/genética , Neoplasias de la Úvea/genética , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Melanoma/fisiopatología , Persona de Mediana Edad , Mutación , Linaje , Penetrancia , Neoplasias de la Úvea/fisiopatología , Secuenciación del Exoma
10.
Cancers (Basel) ; 11(8)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382494

RESUMEN

Expression of DNA repair genes was studied in uveal melanoma (UM) in order to identify genes that may play a role in metastases formation. We searched for genes that are differentially expressed between tumors with a favorable and unfavorable prognosis. Gene-expression profiling was performed on 64 primary UM from the Leiden University Medical Center (LUMC), Leiden, The Netherlands. The expression of 121 genes encoding proteins involved in DNA repair pathways was analyzed: a total of 44 genes differed between disomy 3 and monosomy 3 tumors. Results were validated in a cohort from Genoa and Paris and the The Cancer Genome Atlas (TCGA) cohort. Expression of the PRKDC, WDR48, XPC, and BAP1 genes was significantly associated with clinical outcome after validation. PRKDC was highly expressed in metastasizing UM (p < 0.001), whereas WDR48, XPC, and BAP1 were lowly expressed (p < 0.001, p = 0.006, p = 0.003, respectively). Low expression of WDR48 and XPC was related to a large tumor diameter (p = 0.01 and p = 0.004, respectively), and a mixed/epithelioid cell type (p = 0.007 and p = 0.03, respectively). We conclude that the expression of WDR48, XPC, and BAP1 is significantly lower in UM with an unfavorable prognosis, while these tumors have a significantly higher expression of PRKDC. Pharmacological inhibition of DNA-PKcs resulted in decreased survival of UM cells. PRKDC may be involved in proliferation, invasion and metastasis of UM cells. Unraveling the role of DNA repair genes may enhance our understanding of UM biology and result in the identification of new therapeutic targets.

11.
ACS Chem Biol ; 14(1): 132-136, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30525429

RESUMEN

In uveal melanoma (UM) cells, the protein kinase C (pathway) is almost generally constitutively activated as a result of an activating mutation in either the GNAQ or the GNA11 G-protein. A pan-PKC inhibitor, sotrastaurin (also named AEB071), is in clinical trials for treatment of UM patients with limited success and eliciting adverse effects. Interestingly, genetic interference with expression of just one PKC isoform, e.g., PKCδ, is sufficient to reduce UM cell proliferation. Therefore, we tested the effect of a recently described specific PKCδ inhibitor, B106, on growth and survival of UM cell lines. Surprisingly, we found that B106 efficiently induced apoptosis in several cell lines, but apparently independent of activated PKCδ.


Asunto(s)
Carbazoles/farmacología , Cromanos/farmacología , Proteína Quinasa C-delta/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Úvea/patología , Activación Enzimática , Humanos , Proteína Quinasa C-delta/metabolismo , Neoplasias de la Úvea/enzimología
12.
J Pathol ; 245(4): 433-444, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29732557

RESUMEN

Malignant melanoma of the conjunctiva (CM) is an uncommon but potentially deadly disorder. Many malignancies show an increased activity of the epigenetic modifier enhancer of zeste homolog 2 (EZH2). We studied whether EZH2 is expressed in CM, and whether it may be a target for therapy in this malignancy. Immunohistochemical analysis showed that EZH2 protein expression was absent in normal conjunctival melanocytes and primary acquired melanosis, while EZH2 was highly expressed in 13 (50%) of 26 primary CM and seven (88%) of eight lymph node metastases. Increased expression was positively associated with tumour thickness (p =0.03). Next, we targeted EZH2 with specific inhibitors (GSK503 and UNC1999) or depleted EZH2 by stable shRNA knockdown in three primary CM cell lines. Both pharmacological and genetic inactivation of EZH2 inhibited cell growth and colony formation and influenced EZH2-mediated gene transcription and cell cycle profile in vitro. The tumour suppressor gene p21/CDKN1A was especially upregulated in CM cells after EZH2 knockdown in CM cells. Additionally, the potency of GSK503 against CM cells was monitored in zebrafish xenografts. GSK503 profoundly attenuated tumour growth in CM xenografts at a well-tolerated concentration. Our results indicate that elevated levels of EZH2 are relevant to CM tumourigenesis and progression, and that EZH2 may become a potential therapeutic target for patients with CM. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Conjuntiva/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Piridonas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Neoplasias de la Conjuntiva/genética , Neoplasias de la Conjuntiva/metabolismo , Neoplasias de la Conjuntiva/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/secundario , Persona de Mediana Edad , Terapia Molecular Dirigida , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven , Pez Cebra
13.
Oncotarget ; 9(5): 6174-6187, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464063

RESUMEN

Very little to no improvement in overall survival has been seen in patients with advanced non-resectable cutaneous melanoma or metastatic uveal melanoma in decades, highlighting the need for novel therapeutic options. In this study we investigated as a potential novel therapeutic intervention for both cutaneous and uveal melanoma patients a combination of the broad spectrum HDAC inhibitor quisinostat and pan-CDK inhibitor flavopiridol. Both drugs are currently in clinical trials reducing time from bench to bedside. Combining quisinostat and flavopiridol shows a synergistic reduction in cell viability of all melanoma cell lines tested, irrespective of their driver mutations. This synergism was also observed in BRAFV600E mutant melanoma that had acquired resistance to BRAF inhibition. Mechanistically, loss of cell viability was, at least partly, due to induction of apoptotic cell death. The combination was also effectively inducing tumor regression in a preclinical setting, namely a patient-derived tumor xenograft (PDX) model of cutaneous melanoma, without increasing adverse effects. We propose that the quisinostat/flavopiridol combination is a promising therapeutic option for both cutaneous and uveal metastatic melanoma patients, independent of their mutational status or (acquired) resistance to BRAF inhibition.

14.
J Pathol ; 241(5): 661-670, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28097652

RESUMEN

Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets. We report here that the MDM4 protein is frequently abundant in the context of mutant p53 in basal-like BC samples. Importantly, we show that MDM4 plays a critical role in the proliferation of these BC cells. We demonstrate that conditional knockdown (KD) of MDM4 provokes growth inhibition across a range of BC subtypes with mutant p53, including luminal, Her2+ and triple-negative BCs. In vivo, MDM4 was shown to be crucial for the establishment and progression of tumours. This growth inhibition was mediated, at least in part, by the cell cycle inhibitor p27. Depletion of p27 together with MDM4 KD led to recovery of the proliferative capacity of cells that were growth-inhibited by MDM4 KD alone. Consistently, we identified low levels of p27 expression in basal-like tumours corresponding to high levels of MDM4 and p53. This predicts a signature for a subset of tumours that may be amenable to therapies targeted towards MDM4 and mutant p53. The therapeutic potential of MDM4 as a target in BC with mutant p53 was shown in vitro by use of a small-molecule inhibitor. Overall, our study supports MDM4 as a novel therapeutic target for BC expressing mutant p53. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética , Antracenos/farmacología , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Tiourea/análogos & derivados , Tiourea/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/metabolismo
15.
Cancer Res ; 75(4): 698-708, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25649770

RESUMEN

TP53 gene mutation is associated with poor prognosis in breast cancer, but additional biomarkers that can further refine the impact of the p53 pathway are needed to achieve clinical utility. In this study, we evaluated a role for the HDMX-S/FL ratio as one such biomarker, based on its association with other suppressor mutations that confer worse prognosis in sarcomas, another type of cancer that is surveilled by p53. We found that HDMX-S/FL ratio interacted with p53 mutational status to significantly improve prognostic capability in patients with breast cancer. This biomarker pair offered prognostic utility that was comparable with a microarray-based prognostic assay. Unexpectedly, the utility tracked independently of DNA-damaging treatments and instead with different tumor metastasis potential. Finally, we obtained evidence that this biomarker pair might identify patients who could benefit from anti-HDM2 strategies to impede metastatic progression. Taken together, our work offers a p53 pathway marker, which both refines our understanding of the impact of p53 activity on prognosis and harbors potential utility as a clinical tool.


Asunto(s)
Neoplasias de la Mama/genética , Metástasis Linfática/genética , Proteínas Nucleares/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Proteína p53 Supresora de Tumor/biosíntesis , Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática/patología , Mutación , Estadificación de Neoplasias , Proteína p53 Supresora de Tumor/genética
16.
Breast Cancer Res Treat ; 148(1): 7-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25257729

RESUMEN

The p53 tumor suppressor protein is primarily known for its important role in tumor suppression. In addition, p53 affects tumor cell migration, invasion, and epithelial-mesenchymal transition (EMT); processes also regulated by the transforming growth factor-ß (TGF-ß) signaling pathway. Here, we investigated the role of p53 in breast tumor cell invasion, migration, and EMT and examined the interplay of p53 with TGF-ß3 in these processes. MCF-10A1 and MCF-10CA1a breast cancer cells were treated with Nutlin-3 and TGF-ß3, and the effects on tumor cell migration and invasion were studied in transwell and 3D spheroid invasion assays. The effects of Nutlin-3 and TGF-ß3 on EMT were examined in NMuMG cells. To identify genes involved in TGF-ß-induced invasion that are modulated by p53, a Human Tumor Metastasis-specific RT-PCR array was performed. Verification of EPHB2 regulation by TGF-ß3 and p53 was performed on breast cancer tumor cell lines. We demonstrate that p53 inhibits basal and TGF-ß3-induced invasion, migration, and EMT in normal breast epithelial and breast cancer cells. Pharmacological activation of p53 inhibited induction of several TGF-ß3 targets involved in TGF-ß3-induced tumor cell invasion, i.e., matrix metallo proteinase (MMP)2, MMP9, and integrin ß 3 . The ephrin-type B receptor 2 (EPHB2) gene was identified as a new TGF-ß target important for TGF-ß3-mediated invasion and migration, whose transcriptional activation by TGF-ß3 is also inhibited by p53. The results show an intricate interplay between p53 and TGF-ß3 whereby p53 inhibits the TGF-ß3-induced expression of genes, e.g., EPHB2, to impede tumor cell invasion and migration.


Asunto(s)
Neoplasias de la Mama/genética , Invasividad Neoplásica/genética , Receptor EphB2/genética , Factor de Crecimiento Transformador beta3/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Transfección
17.
Invest Ophthalmol Vis Sci ; 55(10): 6612-22, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25249605

RESUMEN

PURPOSE: Uveal melanoma (UM) is fatal in up to 50% of patients because of liver metastases that are refractory to therapies currently available. While murine xenograft models for human uveal melanoma are available, they have limited utility for screening large compound libraries in drug discovery studies. Therefore, new robust preclinical models are needed that can efficiently evaluate drug efficacy for treatment of this malignancy. METHODS: Uveal melanoma cell lines generated from primary tumors (92.1, Mel270) and metastases (OMM2.3, OMM2.5, OMM1) were injected into the yolk of 2-day-old zebrafish embryos. After 6 days, proliferation and active migration was quantified via automated confocal image analysis. To determine the suitability of this xenotransplantation model for drug testing, drugs with three different activities (dasatinib, quisinostat, and MLN-4924) were added to the water of uveal melanoma-engrafted embryos. RESULTS: All tested UM cell lines proliferated and migrated in the embryos; significant differences could be discerned between cell lines: Cells derived from metastases showed more migration and proliferation than cells derived from the primary tumors, and provided preclinical models for drug testing. Addition of the Src-inhibitor dasatinib in the water of engrafted embryos reduced proliferation and migration of high Src-expressing 92.1 cells, but did not affect low Src-expressing metastatic OMM2.3 cells. Two experimental anticancer drugs, quisinostat (a histone deacetylase inhibitor) and MLN-4924 (neddylation pathway inhibitor), blocked migration and proliferation of 92.1 and OMM2.3. CONCLUSIONS: We established a zebrafish xenograft model of human uveal melanoma with demonstrated applicability for screening large libraries of compounds in drug discovery studies.


Asunto(s)
Antineoplásicos/uso terapéutico , Melanoma/embriología , Neoplasias Experimentales/embriología , Neoplasias de la Úvea/embriología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Humanos , Melanoma/tratamiento farmacológico , Células Tumorales Cultivadas , Neoplasias de la Úvea/tratamiento farmacológico , Pez Cebra/embriología
18.
J Pathol ; 233(4): 415-24, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24974828

RESUMEN

Translocations involving ETS-transcription factors, most commonly leading to the EWSR1-FLI1 fusion protein, are the hallmark of Ewing sarcoma. Despite knowledge of this driving molecular event, an effective therapeutic strategy is lacking. To test potential treatment regimes, we established a novel Ewing sarcoma zebrafish engraftment model allowing time-effective, dynamic quantification of Ewing sarcoma progression and tumour burden in vivo, applicable for screening of single and combined compounds. In Ewing sarcoma the tumour-suppressor gene TP53 is commonly found to be wild-type, thus providing an attractive target for treatment. Here, we study TP53 wild-type (EW7, CADO-ES1 and TC32) and TP53-deleted (SK-N-MC) Ewing sarcoma cell lines to investigate the potentiating effect of p53 reactivation by Nutlin-3 on treatment with YK-4-279 to block transcriptional activity of EWSR1-FLI1 protein. Blocking EWSR1-FLI1 transcriptional activity reduced Ewing sarcoma tumour cell burden irrespective of TP53 status. We show that simultaneous YK-4-279 treatment with Nutlin-3 to stabilize p53 resulted in an additive inhibition of TP53 wild-type Ewing sarcoma cell burden, whilst not affecting TP53-deleted Ewing sarcoma cells. Improved inhibition of proliferation and migration by combinatorial treatment was confirmed in vivo by zebrafish engraftments. Mechanistically, both compounds together additively induced apoptosis of tumour cells in vivo by engaging distinct pathways. We propose reactivation of the p53 pathway in combination with complementary targeted therapy by EWSR1-FLI1 transcriptional activity disruption as a valuable strategy against p53 wild-type Ewing sarcoma.


Asunto(s)
Neoplasias Óseas/prevención & control , Proteínas de Unión al ARN/genética , Sarcoma de Ewing/prevención & control , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/fisiología , Proteínas de Pez Cebra/genética , Animales , Antineoplásicos/farmacología , Neoplasias Óseas/genética , Neoplasias Óseas/fisiopatología , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Xenoinjertos , Humanos , Imidazoles/farmacología , Indoles/farmacología , Piperazinas/farmacología , Proteína EWS de Unión a ARN , Proteínas de Unión al ARN/efectos de los fármacos , Sarcoma de Ewing/genética , Sarcoma de Ewing/fisiopatología , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Pez Cebra , Proteínas de Pez Cebra/efectos de los fármacos
19.
Am J Cancer Res ; 2(5): 492-507, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957303

RESUMEN

The p53 tumor suppressor pathway is inactivated in cancer either via direct mutation or via deregulation of upstream regulators or downstream effectors. P53 mutations are rare in uveal melanoma. Here we investigated the role of the p53 inhibitor Hdmx in uveal melanoma. We found Hdmx over-expression in a subset of uveal melanoma cell lines and fresh-frozen tumor samples. Hdmx depletion resulted in cell-line dependent growth inhibition, apparently correlating with differential Hdm2 levels. Surprisingly, p53 knockdown hardly rescued cell cycle arrest and apoptosis induction upon Hdmx knockdown, whereas it effectively prevented growth suppression induced by the potent p53 activator Nutlin-3. In addition, two compounds inhibiting Hdmx function or expression, SAH-p53-8 and XI-011, also elicited a growth inhibitory effect in a partly p53-independent manner. These findings suggest a novel, growth-promoting function of Hdmx that does not rely on its ability to inhibit p53. We provide evidence for a contribution of p27 protein induction to the observed p53-independent G1 arrest in response to Hdmx knockdown. In conclusion, our study establishes the importance of Hdmx as an oncogene in a subset of uveal melanomas and widens the spectrum of its function beyond p53 inhibition.

20.
Cancer Res ; 72(16): 4074-84, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22700878

RESUMEN

Conventional high-grade osteosarcoma is the most common primary bone malignancy. Although altered expression of the p53 inhibitor HDMX (Mdmx/Mdm4) is associated with cancer risk, progression, and outcome in other tumor types, little is known about its role in osteosarcoma. High expression of the Hdmx splice variant HDMX-S relative to the full-length transcript (the HDMX-S/HDMX-FL ratio) correlates with reduced HDMX protein expression, faster progression, and poorer survival in several cancers. Here, we show that the HDMX-S/HDMX-FL ratio positively correlates with less HDMX protein expression, faster metastatic progression, and a trend to worse overall survival in osteosarcomas. We found that the HDMX-S/HDMX-FL ratio associated with common somatic genetic lesions connected with p53 inhibition, such as p53 mutation and HDM2 overexpression in osteosarcoma cell lines. Interestingly, this finding was not limited to osteosarcomas as we observed similar associations in breast cancer and a variety of other cancer cell lines, as well as in tumors from patients with soft tissue sarcoma. The HDMX-S/HDMX-FL ratio better defined patients with sarcoma with worse survival rates than p53 mutational status. We propose a novel role for alternative splicing of HDMX, whereby it serves as a mechanism by which HDMX protein levels are reduced in cancer cells that have already inhibited p53 activity. Alternative splicing of HDMX could, therefore, serve as a more effective biomarker for p53 pathway attenuation in cancers than p53 gene mutation.


Asunto(s)
Neoplasias Óseas/genética , Genes p53 , Mutación , Proteínas Nucleares/genética , Osteosarcoma/genética , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Empalme Alternativo , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Nucleares/biosíntesis , Osteosarcoma/metabolismo , Pronóstico , Isoformas de Proteínas , Proteínas Proto-Oncogénicas/biosíntesis , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA