Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Immunol ; 15: 1360412, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745652

RESUMEN

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Asunto(s)
Mycobacterium tuberculosis , Células Mieloides , Tuberculosis Pulmonar , Humanos , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Receptores de Orexina/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Adulto , Femenino , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Persona de Mediana Edad , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Pulmón/metabolismo , Biomimética , Monocitos/inmunología , Monocitos/metabolismo
2.
JCI Insight ; 9(8)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512356

RESUMEN

BACKGROUNDNovel biomarkers to identify infectious patients transmitting Mycobacterium tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to distinguish TB cases from healthy individuals and patients with other respiratory infections.METHODSWe applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South African and Peruvian cohorts. Bioinformatic analysis using linear modeling and network correlation analyses identified 118 differentially expressed proteins, significant through 3 complementary analytical pipelines. Candidate biomarkers were subsequently analyzed in 2 validation cohorts of differing ethnicity using antibody-based proximity extension assays.RESULTSTB-specific host biomarkers were confirmed. A 6-protein diagnostic panel, comprising FETUB, FCGR3B, LRG1, SELL, CD14, and ADA2, differentiated patients with pulmonary TB from healthy controls and patients with other respiratory infections with high sensitivity and specificity in both cohorts.CONCLUSIONThis biomarker panel exceeds the World Health Organization Target Product Profile specificity criteria for a triage test for TB. The new biomarkers have potential for further development as near-patient TB screening assays, thereby helping to close the case-detection gap that fuels the global pandemic.FUNDINGMedical Research Council (MRC) (MR/R001065/1, MR/S024220/1, MR/P023754/1, and MR/W025728/1); the MRC and the UK Foreign Commonwealth and Development Office; the UK National Institute for Health Research (NIHR); the Wellcome Trust (094000, 203135, and CC2112); Starter Grant for Clinical Lecturers (Academy of Medical Sciences UK); the British Infection Association; the Program for Advanced Research Capacities for AIDS in Peru at Universidad Peruana Cayetano Heredia (D43TW00976301) from the Fogarty International Center at the US NIH; the UK Technology Strategy Board/Innovate UK (101556); the Francis Crick Institute, which receives funding from UKRI-MRC (CC2112); Cancer Research UK (CC2112); and the NIHR Biomedical Research Centre of Imperial College NHS.


Asunto(s)
Biomarcadores , Proteómica , Tuberculosis Pulmonar , Humanos , Biomarcadores/sangre , Proteómica/métodos , Masculino , Femenino , Adulto , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/sangre , Mycobacterium tuberculosis , Persona de Mediana Edad , Perú/epidemiología , Sudáfrica/epidemiología , Estudios de Casos y Controles , Sensibilidad y Especificidad
3.
Eur Respir J ; 60(5)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35595321

RESUMEN

By attenuating T-cell activation, immune checkpoints (ICs) limit optimal anti-tumour responses and IC inhibition (ICI) has emerged as a new therapy for a broad range of cancers. T-cell responses are indispensable to tuberculosis (TB) immunity in humans. However, boosting T-cell immunity in cancer patients by blocking the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) axis can trigger re-activation of latent TB. This phenomenon appears to contradict the prevailing thought that enhancing T-cell immunity to Mycobacterium tuberculosis will improve immune control of this pathogen. In support of this anecdotal human data, several murine studies have shown that PD-1 deficiency leads to severe TB disease and rapid death. These observations warrant a serious reconsideration of what constitutes effective TB immunity and how ICs contribute to it. Through restraining T-cell responses, ICs are critical to preventing excessive tissue damage and maintaining a range of effector functions. Bolstering this notion, inhibitory receptors limit pathology in respiratory infections such as influenza, where loss of negative immune regulation resulted in progressive immunopathology. In this review, we analyse the mechanisms of ICs in general and their role in TB in particular. We conclude with a reflection on the emerging paradigm and avenues for future research.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Ratones , Animales , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Puntos de Control Inmunológico , Tuberculosis/tratamiento farmacológico , Activación de Linfocitos
4.
J Clin Invest ; 131(15)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34128839

RESUMEN

Tuberculosis (TB) is a persistent global pandemic, and standard treatment for it has not changed for 30 years. Mycobacterium tuberculosis (Mtb) has undergone prolonged coevolution with humans, and patients can control Mtb even after extensive infection, demonstrating the fine balance between protective and pathological host responses within infected granulomas. We hypothesized that whole transcriptome analysis of human TB granulomas isolated by laser capture microdissection could identify therapeutic targets, and that comparison with a noninfectious granulomatous disease, sarcoidosis, would identify disease-specific pathological mechanisms. Bioinformatic analysis of RNAseq data identified numerous shared pathways between TB and sarcoidosis lymph nodes, and also specific clusters demonstrating TB results from a dysregulated inflammatory immune response. To translate these insights, we compared 3 primary human cell culture models at the whole transcriptome level and demonstrated that the 3D collagen granuloma model most closely reflected human TB disease. We investigated shared signaling pathways with human disease and identified 12 intracellular enzymes as potential therapeutic targets. Sphingosine kinase 1 inhibition controlled Mtb growth, concurrently reducing intracellular pH in infected monocytes and suppressing inflammatory mediator secretion. Immunohistochemical staining confirmed that sphingosine kinase 1 is expressed in human lung TB granulomas, and therefore represents a host therapeutic target to improve TB outcomes.


Asunto(s)
Granuloma del Sistema Respiratorio/metabolismo , Pulmón/metabolismo , Modelos Biológicos , Mycobacterium tuberculosis/metabolismo , RNA-Seq , Tuberculosis Pulmonar/metabolismo , Adulto , Anciano , Femenino , Granuloma del Sistema Respiratorio/genética , Granuloma del Sistema Respiratorio/microbiología , Granuloma del Sistema Respiratorio/patología , Humanos , Pulmón/microbiología , Pulmón/patología , Masculino , Persona de Mediana Edad , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/patología
5.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33848273

RESUMEN

T cell immunity is essential for the control of tuberculosis (TB), an important disease of the lung, and is generally studied in humans using peripheral blood cells. Mounting evidence, however, indicates that tissue-resident memory T cells (Trms) are superior at controlling many pathogens, including Mycobacterium tuberculosis (M. tuberculosis), and can be quite different from those in circulation. Using freshly resected lung tissue, from individuals with active or previous TB, we identified distinct CD4+ and CD8+ Trm-like clusters within TB-diseased lung tissue that were functional and enriched for IL-17-producing cells. M. tuberculosis-specific CD4+ T cells producing TNF-α, IL-2, and IL-17 were highly expanded in the lung compared with matched blood samples, in which IL-17+ cells were largely absent. Strikingly, the frequency of M. tuberculosis-specific lung T cells making IL-17, but not other cytokines, inversely correlated with the plasma IL-1ß levels, suggesting a potential link with disease severity. Using a human granuloma model, we showed the addition of either exogenous IL-17 or IL-2 enhanced immune control of M. tuberculosis and was associated with increased NO production. Taken together, these data support an important role for M. tuberculosis-specific Trm-like, IL-17-producing cells in the immune control of M. tuberculosis in the human lung.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-17/inmunología , Pulmón/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Linfocitos T CD4-Positivos/patología , Femenino , Humanos , Interleucina-1beta/inmunología , Interleucina-2/inmunología , Pulmón/patología , Masculino , Óxido Nítrico/inmunología , Tuberculosis Pulmonar/patología
6.
Elife ; 92020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32091388

RESUMEN

Previously, we developed a 3-dimensional cell culture model of human tuberculosis (TB) and demonstrated its potential to interrogate the host-pathogen interaction (Tezera et al., 2017a). Here, we use the model to investigate mechanisms whereby immune checkpoint therapy for cancer paradoxically activates TB infection. In patients, PD-1 is expressed in Mycobacterium tuberculosis (Mtb)-infected lung tissue but is absent in areas of immunopathology. In the microsphere model, PD-1 ligands are up-regulated by infection, and the PD-1/PD-L1 axis is further induced by hypoxia. Inhibition of PD-1 signalling increases Mtb growth, and augments cytokine secretion. TNF-α is responsible for accelerated Mtb growth, and TNF-α neutralisation reverses augmented Mtb growth caused by anti-PD-1 treatment. In human TB, pulmonary TNF-α immunoreactivity is increased and circulating PD-1 expression negatively correlates with sputum TNF-α concentrations. Together, our findings demonstrate that PD-1 regulates the immune response in TB, and inhibition of PD-1 accelerates Mtb growth via excessive TNF-α secretion.


Asunto(s)
Inmunoterapia/métodos , Tuberculosis Latente/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Hipoxia de la Célula , Granuloma/metabolismo , Humanos , Tuberculosis Latente/inmunología , Microesferas , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba
7.
PLoS Pathog ; 13(6): e1006367, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28570642

RESUMEN

Tuberculosis remains a global pandemic and drives lung matrix destruction to transmit. Whilst pathways driving inflammatory responses in macrophages have been relatively well described, negative regulatory pathways are less well defined. We hypothesised that Mycobacterium tuberculosis (Mtb) specifically targets negative regulatory pathways to augment immunopathology. Inhibition of signalling through the PI3K/AKT/mTORC1 pathway increased matrix metalloproteinase-1 (MMP-1) gene expression and secretion, a collagenase central to TB pathogenesis, and multiple pro-inflammatory cytokines. In patients with confirmed pulmonary TB, PI3Kδ expression was absent within granulomas. Furthermore, Mtb infection suppressed PI3Kδ gene expression in macrophages. Interestingly, inhibition of the MNK pathway, downstream of pro-inflammatory p38 and ERK MAPKs, also increased MMP-1 secretion, whilst suppressing secretion of TH1 cytokines. Cross-talk between the PI3K and MNK pathways was demonstrated at the level of eIF4E phosphorylation. Mtb globally suppressed the MMP-inhibitory pathways in macrophages, reducing levels of mRNAs encoding PI3Kδ, mTORC-1 and MNK-1 via upregulation of miRNAs. Therefore, Mtb disrupts negative regulatory pathways at multiple levels in macrophages to drive a tissue-destructive phenotype that facilitates transmission.


Asunto(s)
Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Humanos , Macrófagos/microbiología , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
8.
Clin Infect Dis ; 65(1): 121-132, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28475709

RESUMEN

Background: Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. Methods: We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. Results: MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. Conclusions: MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS.


Asunto(s)
Colagenasas/metabolismo , Infecciones por VIH/complicaciones , Síndrome Inflamatorio de Reconstitución Inmune , Tuberculosis , Adulto , Estudios Transversales , Femenino , Infecciones por VIH/epidemiología , VIH-1 , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/complicaciones , Síndrome Inflamatorio de Reconstitución Inmune/epidemiología , Síndrome Inflamatorio de Reconstitución Inmune/metabolismo , Masculino , Metaloproteinasa 8 de la Matriz/metabolismo , Fragmentos de Péptidos/metabolismo , Procolágeno/metabolismo , Estudios Prospectivos , Sudáfrica , Tuberculosis/complicaciones , Tuberculosis/epidemiología , Tuberculosis/metabolismo , Adulto Joven
9.
mBio ; 8(1)2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28174307

RESUMEN

Antimicrobial resistance presents one of the most significant threats to human health, with the emergence of totally drug-resistant organisms. We have combined bioengineering, genetically modified bacteria, longitudinal readouts, and fluidics to develop a transformative platform to address the drug development bottleneck, utilizing Mycobacterium tuberculosis as the model organism. We generated microspheres incorporating virulent reporter bacilli, primary human cells, and an extracellular matrix by using bioelectrospray methodology. Granulomas form within the three-dimensional matrix, and mycobacterial stress genes are upregulated. Pyrazinamide, a vital first-line antibiotic for treating human tuberculosis, kills M. tuberculosis in a three-dimensional culture but not in a standard two-dimensional culture or Middlebrook 7H9 broth, demonstrating that antibiotic sensitivity within microspheres reflects conditions in patients. We then performed pharmacokinetic modeling by combining the microsphere system with a microfluidic plate and demonstrated that we can model the effect of dynamic antibiotic concentrations on mycobacterial killing. The microsphere system is highly tractable, permitting variation of cell content, the extracellular matrix, sphere size, the infectious dose, and the surrounding medium with the potential to address a wide array of human infections and the threat of antimicrobial resistance. IMPORTANCE: Antimicrobial resistance is a major global threat, and an emerging concept is that infection should be studied in the context of host immune cells. Tuberculosis is a chronic infection that kills over a million people every year and is becoming progressively more resistant to antibiotics. Recent major studies of shorter treatment or new vaccination approaches have not been successful, demonstrating that transformative technologies are required to control tuberculosis. We have developed an entirely new system to study the infection of host cells in a three-dimensional matrix by using bioengineering. We showed that antibiotics that work in patients are effective in this microsphere system but not in standard infection systems. We then combined microspheres with microfluidics to model drug concentration changes in patients and demonstrate the effect of increasing antibiotic concentrations on bacterial survival. This system can be widely applied to address the threat of antimicrobial resistance and develop new treatments.


Asunto(s)
Técnicas Bacteriológicas/métodos , Técnicas de Cultivo de Célula/métodos , Farmacorresistencia Bacteriana , Microfluídica/métodos , Microesferas , Modelos Teóricos , Mycobacterium tuberculosis/efectos de los fármacos , Células Cultivadas , Humanos , Mycobacterium tuberculosis/crecimiento & desarrollo
10.
Elife ; 62017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28063256

RESUMEN

Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen-alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches.


Asunto(s)
Interacciones Huésped-Patógeno/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Modelos Biológicos , Mycobacterium tuberculosis/patogenicidad , Esferoides Celulares/efectos de los fármacos , Alginatos/química , Antígenos Bacterianos/farmacología , Proteínas Bacterianas/farmacología , Quimiocina CCL2/biosíntesis , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/biosíntesis , Quimiocina CXCL10/metabolismo , Técnicas de Cocultivo , Colágeno/química , Dinoprostona/farmacología , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/inmunología , Regulación de la Expresión Génica , Ácido Glucurónico/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Ácidos Hexurónicos/química , Interacciones Huésped-Patógeno/inmunología , Humanos , Interleucina-12/biosíntesis , Interleucina-12/metabolismo , Interleucina-1beta/biosíntesis , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Microesferas , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Esferoides Celulares/inmunología , Esferoides Celulares/microbiología , Virulencia
11.
J Immunol ; 195(3): 882-91, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26091717

RESUMEN

Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration.


Asunto(s)
Colágeno/metabolismo , Metaloproteinasa 14 de la Matriz/inmunología , Monocitos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Adulto , Anciano , Movimiento Celular , Células Cultivadas , Colagenasas/inmunología , Femenino , Humanos , Masculino , Metaloproteinasa 14 de la Matriz/biosíntesis , Metaloproteinasa 14 de la Matriz/genética , Persona de Mediana Edad , ARN Mensajero/genética , Esputo/metabolismo , Adulto Joven , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Adv Funct Mater ; 24(18): 2648-2657, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25411575

RESUMEN

A growing body of evidence suggests that studying cell biology in classical two-dimensional formats, such as cell culture plasticware, results in misleading, non-physiological findings. For example, some aspects of cancer biology cannot be observed in 2D, but require 3D culture methods to recapitulate observations in vivo. Therefore, we developed a microsphere-based model to permit 3D cell culture incorporating physiological extracellular matrix components. Bio-electrospraying was chosen as it is the most advanced method to produce microspheres, with THP-1 cells as a model cell line. Bio-electrospraying parameters, such as nozzle size, polymer flow rate, and voltage, were systematically optimized to allow stable production of size controlled microspheres containing extracellular matrix material and human cells. We investigated the effect of bio-electrospraying parameters, alginate type and cell concentration on cell viability using trypan blue and propidium iodide staining. Bio-electrospraying had no effect on cell viability nor the ability of cells to proliferate. Cell viability was similarly minimally affected by encapsulation in all types of alginate tested (MVM, MVG, chemical- and food-grade). Cell density of 5 × 106 cells ml-1 within microspheres was the optimum for cell survival and proliferation. The stable generation of microspheres incorporating cells and extracellular matrix for use in a 3D cell culture will benefit study of many diverse diseases and permit investigation of cellular biology within a 3D matrix.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA