Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep Med ; 5(5): 101546, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703766

RESUMEN

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Factores Inhibidores de la Migración de Macrófagos , Neuronas Motoras , Superóxido Dismutasa-1 , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Ratones Transgénicos , Dependovirus/genética , Modelos Animales de Enfermedad , Masculino , Mutación/genética , Femenino , Pliegue de Proteína
2.
Neurosci Lett ; 816: 137493, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774774

RESUMEN

In recent years, the neuroprotective potential of mesenchymal stroma-/stem-like cells (MSC) as well as of MSC-derived extracellular vesicles (EVs) like exosomes has been intensively explored. This included preclinical evaluation regarding treatment of neurodegenerative disorders such as the fatal motor neuron disease amyotrophic Lateral Sclerosis (ALS). Several studies have reported that MSC-derived exosomes can stimulate tissue regeneration and reduce inflammation. MSC release EVs and trophic factors and thereby modify cell-to-cell communication. These cell-free products may protect degenerating motor neurons (MNs) and represent a potential therapeutic approach for ALS. In the present study we investigated the effects of exosomes derived from a permanently growing MSC line on both, wild type and ALS (SOD1G93A transgenic) primary motor neurons. Following application in a normal and stressed environment we could demonstrate beneficial effects of MSC exosomes on neurite growth and morphology indicating the potential for further preclinical evaluation and clinical therapeutic development. Investigation of gene expression profiles detected transcripts of several antioxidant and anti-inflammatory genes in MSC exosomes. Characterization of their microRNA (miRNA) content revealed miRNAs capable of regulating antioxidant and anti-apoptotic pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral , Exosomas , Células Madre Mesenquimatosas , Ratones , Humanos , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Exosomas/metabolismo , Antioxidantes/farmacología , Neuronas Motoras/metabolismo , Células Madre Mesenquimatosas/metabolismo
3.
J Tissue Eng Regen Med ; 13(4): 649-663, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30811816

RESUMEN

Cellular therapy represents a novel option for the treatment of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Its major aim is the generation of a protective environment for degenerating motor neurons. Mesenchymal stromal cells secrete different growth factors and have antiapoptotic and immunomodulatory properties. They can easily and safely be isolated from human bone marrow and are therefore considered promising therapeutic candidates. In the present study, we compared intraventricular application of human mesenchymal stromal cells (hMSCs) versus single and repeated intraspinal injections in the mutant SOD1G93A transgenic ALS mouse model. We observed significant reduction of lifespan of animals treated by intraventricular hMSC injection compared with the vehicle treated control group, accompanied by changes in weight, general condition, and behavioural assessments. A potential explanation for these rather surprising deleterious effects lies in increased microgliosis detected in the hMSC treated animals. Repeated intraspinal injection at two time points resulted in a slight but not significant increase in survival and significant improvement of motor performance although no hMSC-induced changes of motor neuron numbers, astrogliosis, and microgliosis were detected. Quantitative real time polymerase chain reaction showed reduced expression of endothelial growth factor in animals having received hMSCs twice compared with the vehicle treated control group. hMSCs were detectable at the injection site at Day 20 after injection into the spinal cord but no longer at Day 70. Intraspinal injection of hMSCs may therefore be a more promising option for the treatment of ALS than intraventricular injection and repeated injections might be necessary to obtain substantial therapeutic benefit.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Peso Corporal , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Inyecciones Intraventriculares , Masculino , Ratones Transgénicos , Actividad Motora , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/patología , Médula Espinal/fisiopatología , Análisis de Supervivencia
4.
J Tissue Eng Regen Med ; 11(3): 751-764, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-25641599

RESUMEN

Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/trasplante , Médula Espinal/citología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Linaje de la Célula , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inyecciones Espinales , Ratones Transgénicos , Actividad Motora , Células-Madre Neurales/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trasplante de Células Madre , Análisis de Supervivencia
5.
Exp Hematol ; 2014 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-25448489

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

6.
J Neuropathol Exp Neurol ; 72(11): 1052-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24128678

RESUMEN

Mitochondrial dysfunction is an important mechanism in the pathogenesis of neurodegenerative diseases such as Parkinson disease and amyotrophic lateral sclerosis (ALS). DJ-1 and PTEN-induced putative kinase 1 (PINK1) are important proteins for the maintenance of mitochondrial function and protection against cell death. Mutations in the genes coding for these proteins cause familial forms of Parkinson disease. Recent studies have postulated that changes in the expression of both proteins are also involved in pathologic mechanisms in ALS mouse models. Here, we studied the mRNA and protein expression of PINK1 and DJ-1 in postmortem brain and spinal cord tissue and muscle biopsy samples from ALS patients and controls and in brain, spinal cord, and gastrocnemius muscle of SOD1(G93A) ALS mice at different disease stages. We found significant decreases of PINK1 and DJ-1 mRNA levels in muscle tissue of SOD1(G93A) mice. Together with the significant decrease of PINK1 mRNA levels in human ALS muscle tissue, statistically nonsignificant reduction of DJ-1 mRNA levels, and reduced immunostaining for PINK1 in human ALS muscle, the results suggest potential pathophysiologic roles for these proteins in both mutant SOD1 transgenic mice and in sporadic ALS(G93A).


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Quinasas/metabolismo , Médula Espinal/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/patología , Proteínas Oncogénicas/genética , Proteína Desglicasa DJ-1 , Proteínas Quinasas/genética , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
7.
PLoS One ; 8(9): e72926, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069165

RESUMEN

Administration of mesenchymal stromal cells (MSC) improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice), NSC-34 cells and glial cells (astrocytes, microglia) (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice) in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM) attenuated staurosporine (STS) - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF) in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1) was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microglía/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Células Cultivadas , Quimiocina CX3CL1/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Medios de Cultivo Condicionados/farmacología , Factores Neurotróficos Derivados de la Línea Celular Glial/metabolismo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Estaurosporina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA