Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774681

RESUMEN

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Lóbulo Frontal , Microglía , Neuronas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Neuronas/patología , Células Piramidales , Biopsia , Lóbulo Frontal/patología , Análisis de Expresión Génica de una Sola Célula , Núcleo Celular/metabolismo , Núcleo Celular/patología
2.
Semin Immunol ; 60: 101651, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36155944

RESUMEN

Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Enfermedades Neurodegenerativas/metabolismo , Microglía , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Encéfalo
3.
Neuron ; 106(1): 76-89.e8, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32004439

RESUMEN

Unbiased in vivo genome-wide genetic screening is a powerful approach to elucidate new molecular mechanisms, but such screening has not been possible to perform in the mammalian central nervous system (CNS). Here, we report the results of the first genome-wide genetic screens in the CNS using both short hairpin RNA (shRNA) and CRISPR libraries. Our screens identify many classes of CNS neuronal essential genes and demonstrate that CNS neurons are particularly sensitive not only to perturbations to synaptic processes but also autophagy, proteostasis, mRNA processing, and mitochondrial function. These results reveal a molecular logic for the common implication of these pathways across multiple neurodegenerative diseases. To further identify disease-relevant genetic modifiers, we applied our screening approach to two mouse models of Huntington's disease (HD). Top mutant huntingtin toxicity modifier genes included several Nme genes and several genes involved in methylation-dependent chromatin silencing and dopamine signaling, results that reveal new HD therapeutic target pathways.


Asunto(s)
Supervivencia Celular/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neostriado/metabolismo , Neuronas/metabolismo , Animales , Conducta Animal , Sistemas CRISPR-Cas , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Genes Esenciales/genética , Ratones , Ratones Transgénicos , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasa D/genética , Agregado de Proteínas , Interferencia de ARN , ARN Guía de Kinetoplastida , ARN Interferente Pequeño , Receptores de Dopamina D2/genética , Análisis de Secuencia de ARN
4.
PLoS One ; 7(7): e42117, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848727

RESUMEN

The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.


Asunto(s)
Caenorhabditis elegans/citología , Proteínas de Unión al ADN/metabolismo , Azul de Metileno/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteína FUS de Unión a ARN/metabolismo , Pez Cebra/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Azul de Metileno/administración & dosificación , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Proteína FUS de Unión a ARN/genética , Factores de Tiempo , Pez Cebra/genética
5.
Hum Mol Genet ; 21(10): 2211-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22337953

RESUMEN

Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.


Asunto(s)
Drosophila/genética , Sistema de Lectura Ribosómico , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Ataxina-3 , Drosophila/metabolismo , Inmunohistoquímica , Enfermedad de Machado-Joseph/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/química , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transfección , Expansión de Repetición de Trinucleótido
6.
Blood ; 104(9): 2655-60, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15231574

RESUMEN

The purpose of this study was to determine dose-limiting toxicities and pharmacokinetics of imatinib in children with refractory or recurrent Philadelphia chromosome-positive (Ph(+)) leukemias. Oral imatinib was administered daily at dose levels ranging from 260 to 570 mg/m(2). Plasma pharmacokinetic studies were performed on days 1 and 8 of course 1. There were 31 children who received 479 courses of imatinib. The most common toxicities encountered, which occurred in less than 5% of courses, were grade 1 or 2 nausea, vomiting, fatigue, diarrhea, and reversible increases in serum transaminases. One patient at the 440-mg/m(2) dose level had dose-limiting weight gain. There were no other first-course dose-limiting toxicities. A maximum tolerated dosage was not defined. Among 12 chronic myeloid leukemia (CML) patients evaluable for cytogenetic response, 10 had a complete response and 1 had a partial response. Among 10 acute lymphoblastic leukemia (ALL) patients evaluable for morphologic response, 7 achieved an M1 and 1 achieved an M2 bone marrow. We observed marked interpatient variability in the pharmacokinetic parameters. In conclusion, we found that daily oral imatinib is well tolerated in children at doses ranging from 260 to 570 mg/m(2). Doses of 260 and 340 mg/m(2) provide systemic exposures similar to those of adults who are treated with daily doses of 400 and 600 mg, respectively.


Asunto(s)
Leucemia/tratamiento farmacológico , Leucemia/genética , Cromosoma Filadelfia , Piperazinas/administración & dosificación , Pirimidinas/administración & dosificación , Adolescente , Adulto , Benzamidas , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Humanos , Mesilato de Imatinib , Lactante , Leucemia/mortalidad , Farmacocinética , Piperazinas/sangre , Piperazinas/toxicidad , Pirimidinas/sangre , Pirimidinas/toxicidad , Terapia Recuperativa , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA