Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
2.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931085

RESUMEN

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Envejecimiento , Enfermedad de Alzheimer/genética , Animales , Encéfalo/patología , Humanos , Macrófagos/patología , Glicoproteínas de Membrana , Ratones , Microglía/patología , Receptores Inmunológicos
3.
Curr Opin Genet Dev ; 65: 186-194, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32823206

RESUMEN

Microglia are instrumental to the development, function, homeostasis and pathologies of the central nervous system. These brain-resident macrophages arise early in embryogenesis and seed the developing brain, where they differentiate in response to cues provided by their neural niche. Throughout life, microglia regulate the neural tissue through a variety of cellular functions influenced by intrinsic and extrinsic factors. Despite their importance, we are only starting to uncover how microglia colonize the brain, adopt distinct functional states during development and the long-term impact of early alteration of their functions. This review highlights the latest knowledge on the ontogeny of microglia, their developmental trajectory and emerging roles. Characterizing these processes will be critical for our understanding of both brain physiology and pathologies.


Asunto(s)
Encéfalo/fisiología , Homeostasis , Microglía/fisiología , Trastornos del Neurodesarrollo/patología , Neurogénesis , Animales , Encéfalo/citología , Humanos , Macrófagos/citología , Macrófagos/fisiología , Microglía/citología
4.
Cell ; 181(3): 557-573.e18, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259484

RESUMEN

Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ß, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ß.


Asunto(s)
Encéfalo/citología , Macrófagos/citología , Microglía/citología , Animales , Encéfalo/metabolismo , Linaje de la Célula , Ratones , Monocitos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
5.
Cell Rep ; 28(5): 1119-1126.e4, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365857

RESUMEN

The etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring.


Asunto(s)
Interneuronas/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Neocórtex/embriología , Animales , Inflamación/embriología , Inflamación/patología , Interneuronas/patología , Macrófagos/patología , Ratones , Ratones Transgénicos , Microglía/patología , Neocórtex/patología , Parvalbúminas/metabolismo
6.
J Huntingtons Dis ; 7(3): 201-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29889077

RESUMEN

Huntingtin (HTT) is a scaffold protein mostly known because it gives rise to the severe and incurable inherited neurological disorder Huntington's disease (HD) when mutated. The Huntingtin gene (HTT) carries a polymorphic trinucleotide expansion of CAGs in exon 1 that ranges from 9 to 35 in the non-HD affected population. However, if it exceeds 35 CAG repeats, the altered protein is referred to as mutant HTT and leads to the development of HD. Given the wide spectrum of severe symptoms developed by HD individuals, wild-type and mutant HTT have been mostly studied in the context of this disorder. However, HTT expression is ubiquitous and several peripheral symptoms in HD have been described, suggesting that HTT is of importance, not only in the central nervous system (CNS), but also in peripheral organs. Accordingly, HTT and mutant HTT may interfere with non-brain-related diseases. Correlative studies have highlighted a decreased cancer incidence in the HD population and both wild-type and mutant HTT have been implicated in tumor progression. In this review, we describe the current evidence linking wild-type and mutant HTT to cancer and discuss how CAG polymorphism, HTT function, and partners may influence carcinogenesis and metastatic progression.


Asunto(s)
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo
7.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723550

RESUMEN

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hematopoyesis , Macrófagos/fisiología , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis
8.
Neurology ; 88(12): 1114-1119, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28202696

RESUMEN

OBJECTIVE: Polyglutamine (PolyQ) diseases are dominantly transmitted neurologic disorders, caused by coding and expanded CAG trinucleotide repeats. Cancer was reported retrospectively to be rare in patients with PolyQ diseases and we aimed to investigate its prevalence in France. METHODS: Consecutive patients with Huntington disease (HD) and spinocerebellar ataxia (SCA) were questioned about cancer, cardiovascular diseases, and related risk factors in 4 university hospitals in Paris, Toulouse, Strasbourg, and Montpellier. Standardized incidence ratios (SIR), based on age- and sex-adjusted rate of the French population, were assessed for different types of cancer. RESULTS: We questioned 372 patients with HD and 134 patients with SCA. SIR showed significantly reduced risk of cancer in HD: 23 observed cases vs 111.05 expected ones (SIR 0.21, 95% confidence interval [CI] 0.13-0.31), as well as in SCA: 7 observed cases vs 34.73 expected (SIR 0.23, 95% CI 0.08-0.42). This was surprising since risk behavior for cancer was increased in these patients, with significantly greater tobacco and alcohol consumption in patients with HD vs patients with SCA (p < 0.0056). There was no association between CAG repeat size and cancer or cardiovascular disease. However, in patients with HD, skin cancers were more frequent than expected (5 vs 0.98, SIR 5.11, 95% CI 1.65-11.95). CONCLUSIONS: There was a decreased cancer rate in PolyQ diseases despite high incidence of risk factors. Intriguingly, skin cancer incidence was higher, suggesting a crosstalk between neurodegeneration and skin tumorigenesis.


Asunto(s)
Predisposición Genética a la Enfermedad/epidemiología , Enfermedad de Huntington/epidemiología , Neoplasias/epidemiología , Péptidos/genética , Ataxias Espinocerebelosas/epidemiología , Europa (Continente)/epidemiología , Femenino , Humanos , Enfermedad de Huntington/genética , Masculino , Persona de Mediana Edad , Neoplasias/genética , Estudios Retrospectivos , Factores de Riesgo , Ataxias Espinocerebelosas/genética
9.
Eur J Hum Genet ; 24(9): 1310-5, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26980106

RESUMEN

The abnormal expansion of a ≥36 CAG unit tract in the Huntingtin gene (HTT) leads to Huntington's disease (HD), but has also been associated with cancer: the incidence of cancer is lower in HD patients than in age-matched controls, but HD-causing variants of HTT accelerate the progression of breast tumors and the development of metastases in mouse models of breast cancer. To investigate the relationship between HTT CAGs and cancer, data concerning 2407 women with BRCA1 or BRCA2 mutations that predispose to breast and ovarian cancers and 431 patients with breast cancer without family histories were studied; the size of the CAG expansions on both HTT alleles was determined in each subject. The proportion of individuals carrying a CAG expansion in a pathological range for HD was 10 times more frequent than previously reported in the literature. In carriers of BRCA2 mutations, the length of the HTT CAG tract was correlated with lower incidence of ovarian cancer. Among carriers of BRCA1 mutations who developed a breast cancer, its onset occurred 2.4 years earlier in individuals with intermediate HTT alleles (≥27) than in those with a CAG tract <27. Finally, in patients with sporadic HER2 breast cancer, metastasis increased by a factor of 11.10 per 10 additional CAG repeats in HTT. We concluded that whereas long CAG length could be associated with lower cancer incidence, it could also be paradoxically associated with cancer severity (age of apparition and metastasis development).


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Proteína Huntingtina/genética , Repeticiones de Trinucleótidos/genética , Adulto , Alelos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Femenino , Heterocigoto , Humanos , Persona de Mediana Edad , Receptor ErbB-2/genética
10.
EMBO Mol Med ; 5(2): 309-25, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23300147

RESUMEN

In Huntington disease (HD), polyglutamine expansion in the huntingtin protein causes specific neuronal death. The consequences of the presence of mutant huntingtin in other tissues are less well understood. Here we propose that mutant huntingtin influences breast cancer progression. Indeed, we show that mammary tumours appear earlier in mouse breast cancer models expressing mutant huntingtin as compared to control mice expressing wild-type huntingtin. Tumours bearing mutant huntingtin have a modified gene expression pattern that reflects enhanced aggressiveness with the overexpression of genes favouring invasion and metastasis. In agreement, mutant huntingtin accelerates epithelial to mesenchymal transition and enhances cell motility and invasion. Also, lung metastasis is higher in HD conditions than in control mice. Finally, we report that in HD, the dynamin dependent endocytosis of the ErbB2/HER2 receptor tyrosine kinase is reduced. This leads to its accumulation and to subsequent increases in cell motility and proliferation. Our study may thus have important implications for both cancer and HD.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas del Tejido Nervioso/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Transgénicos , Mutación , Metástasis de la Neoplasia , Proteínas del Tejido Nervioso/genética , Receptor ErbB-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA