Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Compr Physiol ; 14(2): 5389-5406, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-39109978

RESUMEN

Uncontrolled angiogenesis underlies various pathological conditions such as cancer, age-related macular degeneration (AMD), and proliferative diabetic retinopathy (PDR). Hence, targeting pathological angiogenesis has become a promising strategy for the treatment of cancer and neovascular ocular diseases. However, current pharmacological treatments that target VEGF signaling have met with limited success either due to acquiring resistance against anti-VEGF therapies with serious side effects including nephrotoxicity and cardiovascular-related adverse effects in cancer patients or retinal vasculitis and intraocular inflammation after intravitreal injection in patients with AMD or PDR. Therefore, there is an urgent need to develop novel strategies which can control multiple aspects of the pathological microenvironment and regulate the process of abnormal angiogenesis. To this end, vascular normalization has been proposed as an alternative for antiangiogenesis approach; however, these strategies still focus on targeting VEGF or FGF or PDGF which has shown adverse effects. In addition to these growth factors, calcium has been recently implicated as an important modulator of tumor angiogenesis. This article provides an overview on the role of major calcium channels in endothelium, TRP channels, with a special focus on TRPV4 and its downstream signaling pathways in the regulation of pathological angiogenesis and vascular normalization. We also highlight recent findings on the modulation of TRPV4 activity and endothelial phenotypic transformation by tumor microenvironment through Rho/YAP/VEGFR2 mechanotranscriptional pathways. Finally, we provide perspective on endothelial TRPV4 as a novel VEGF alternative therapeutic target for vascular normalization and improved therapy. © 2024 American Physiological Society. Compr Physiol 14:5389-5406, 2024.


Asunto(s)
Neovascularización Patológica , Humanos , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/fisiología , Transducción de Señal
2.
FASEB J ; 37(10): e23199, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37732601

RESUMEN

Prostaglandin E2 (PGE2 ) has been implicated in counteracting fibroblast differentiation by TGFß1 during pulmonary fibrosis. However, the precise mechanism is not well understood. We show here that PGE2 via EP2 R and EP4 R inhibits the expression of mechanosensory molecules Lysyl Oxidase Like 2 (LOXL2), myocardin-related transcription factor A (MRTF-A), ECM proteins, plasminogen activation inhibitor 1 (PAI-1), fibronectin (FN), α-smooth muscle actin (α-SMA), and redox sensor (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4)) required for TGFß1-mediated fibroblast differentiation. We further demonstrate that PGE2 inhibits fibrotic signaling via Yes-associated protein (YAP) but does so independently from its actions on SMAD phosphorylation and conserved cylindromatosis (CYLD; deubiquitinase) expression. Mechanistically, PGE2 phosphorylates/inactivates YAP downstream of EP2 R/Gαs and restrains its translocation to the nucleus, thus inhibiting its interaction with TEA domain family members (TEADs) and transcription of fibrotic genes. Importantly, pharmacological or siRNA-mediated inhibition of YAP significantly downregulates TGFß1-mediated fibrotic gene expression and myofibroblast formation. Notably, YAP expression is upregulated in the lungs of D. farinae-treated wild type (WT) mice relative to saline-treated WT mice. Our results unravel a unique role for PGE2 -YAP interactions in fibroblast differentiation, and that PGE2 /YAP inhibition can be used as a novel therapeutic target in the treatment of pathological conditions associated with myofibroblasts like asthma.


Asunto(s)
Dinoprostona , Proteínas Señalizadoras YAP , Animales , Ratones , Fibroblastos , Transducción de Señal , Miofibroblastos
3.
Hypertension ; 80(11): 2345-2356, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37702061

RESUMEN

BACKGROUND: Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. METHODS: We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4ECKO) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. RESULTS: We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4lox/lox mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4ECKO hearts after transverse aortic constriction compared with TRPV4lox/lox. Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4ECKO hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. CONCLUSIONS: Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.


Asunto(s)
Cardiomegalia , Mecanotransducción Celular , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Cardiomegalia/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
FASEB J ; 36(5): e22273, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349200

RESUMEN

Mast cells (MCs) develop from hematopoietic progenitors and differentiate into mature MCs that reside within connective or mucosal tissues. Though the number of MCs in tissues usually remains constant, inflammation and asthma disturb this homeostasis, leading to proliferation of MCs. Understanding the signaling events behind this proliferative response could lead to the development of novel strategies for better management of allergic diseases. MC survival, proliferation, differentiation, and migration are all maintained by a MC growth factor, stem cell factor (SCF) via its receptor, KIT. Here, we explored how protein kinase C (PKC) redundancy influences MC proliferation in bone marrow-derived MC (BMMC). We found that SCF activates PKCα and PKCß isoforms, which in turn modulates KIT phosphorylation and internalization. Further, PKCα and PKCß activate p38 mitogen activated protein kinase (MAPK), and this axis subsequently regulates SCF-induced MC cell proliferation. To ascertain the individual roles of PKCα and PKCß, we knocked down either PKCα or PKCß or both via short hairpin RNA (shRNA) and analyzed KIT phosphorylation, p38 MAPK phosphorylation, and MC viability and proliferation. To our surprise, downregulation of neither PKCα nor PKCß affected MC viability and proliferation. In contrast, blocking both PKCα and PKCß significantly attenuated SCF-induced cell viability and proliferation, suggesting that PKCα and PKCß compensate for each other downstream of SCF signaling to enhance MC viability and proliferation. Our results not only suggest that PKC classical isoforms are novel therapeutic targets for SCF/MC-mediated inflammatory and allergic diseases, but they also emphasize the importance of inhibiting both PKCα and ß isoforms simultaneously to prevent MC proliferation.


Asunto(s)
Mastocitos , Factor de Células Madre , Proliferación Celular , Supervivencia Celular/fisiología , Mastocitos/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Front Physiol ; 12: 756450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867460

RESUMEN

Endothelial permeability, leukocyte attachment, and unregulated oxidized LDL (oxLDL) uptake by macrophages leading to the formation of foam cells are all vital in the initiation and progression of atherosclerosis. During inflammation, several inflammatory mediators regulate this process through the expression of distinct oxLDL binding cell surface receptors on macrophages. We have previously shown that Leukotriene D4 (LTD4) promotes endothelial dysfunction, increasing endothelial permeability and enhancing TNFα-mediated attachment of monocytes to endothelium, which hints at its possible role in atherosclerosis. Here we analyzed the effect of LTD4 on macrophage function. Macrophages mainly express CysLT1R and flux calcium in response to LTD4. Further, LTD4 potentiates phagocytosis in macrophages as revealed by the uptake of zymosan particles. Notably, LTD4 augmented macrophage phagocytosis and oxLDL uptake which is sensitive to MK-571 [Montelukast (MK)], a CysLT1R-specific antagonist. Mechanistically, LTD4 upregulated two receptors central to foam cell formation, oxidized low-density lipoprotein receptor-1 (OLR1/LOX-1), and CD36 in a time and dose-dependent manner. Finally, LTD4 enhanced the secretion of chemokines MCP-1 and MIP1ß. Our results suggest that LTD4 contributes to atherosclerosis either through driving foam cell formation or recruitment of immune cells or both. CysLT1R antagonists are safely being used in the treatment of asthma, and the findings from the current study suggest that these can be re-purposed for the treatment of atherosclerosis.

6.
Angiogenesis ; 24(3): 647-656, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33656628

RESUMEN

Transient receptor potential vanilloid 4 (TRPV4) is a ubiquitously expressed polymodally activated ion channel. TRPV4 has been implicated in tumor progression; however, the cell-specific role of TRPV4 in tumor growth, angiogenesis, and metastasis is unknown. Here, we generated endothelial-specific TRPV4 knockout (TRPV4ECKO) mice by crossing TRPV4lox/lox mice with Tie2-Cre mice. Tumor growth and metastasis were significantly increased in a syngeneic Lewis lung carcinoma tumor model of TRPV4ECKO mice compared to TRPV4lox/lox mice. Multiphoton microscopy, dextran leakage, and immunohistochemical analysis revealed increased tumor angiogenesis and metastasis that were correlated with aberrant leaky vessels (increased width and reduced pericyte and VE-cadherin coverage). Mechanistically, increases in VEGFR2, p-ERK, and MMP-9 expression and DQ gelatinase activity were observed in the TRPV4ECKO mouse tumors. Our results demonstrated that endothelial TRPV4 is a critical modulator of vascular integrity and tumor angiogenesis and that deletion of TRPV4 promotes tumor angiogenesis, growth, and metastasis.


Asunto(s)
Carcinoma Pulmonar de Lewis/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Canales Catiónicos TRPV/genética
7.
Sci Rep ; 10(1): 9827, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32555397

RESUMEN

Asthma is characterized by pathological airway remodeling resulting from persistent myofibroblast activation. Although transforming growth factor beta 1 (TGFß1), mechanical signals, and reactive oxygen species (ROS) are implicated in fibroblast differentiation, their integration is still elusive. We identified that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel mediates lung fibroblast (LF) differentiation and D. farinae-induced airway remodeling via a novel TRPV4-NADPH Oxidase 4 (NOX4) interaction. NOX4-mediated ROS production is essential for TGFß1-induced LF differentiation via myocardin-related transcription factor-A (MRTF-A) and plasminogen activator inhibitor 1 (PAI-1). Importantly, TRPV4 inhibition prevented TGFß1-induced NOX4 expression and ROS production. Both TRPV4 and NOX4 are activated by phosphatidylinositol 3-kinase (PI3K) downstream of TGFß1, and signals from both TRPV4 and Rac are necessary for NOX4 upregulation. Notably, NOX4 expression is higher in fibroblasts derived from asthmatic patients (disease human LF; DHLF) in comparison to non-asthmatics (normal human LF; NHLF). Further, NOX4 expression is up-regulated in the lungs of D.farinae-treated wild type mice (WT) relative to saline-treated WT, which was attenuated in TRPV4 knockout (KO) mice. Our findings suggest that TRPV4 integrates TGFß1 and ROS signaling through NOX4 and, TRPV4-NOX4 interaction is amenable to target lung remodeling during asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Diferenciación Celular , Fibroblastos/citología , NADPH Oxidasa 4/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , NADPH Oxidasa 4/deficiencia , NADPH Oxidasa 4/genética , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Front Cell Dev Biol ; 7: 344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921855

RESUMEN

The soluble and mechanical microenvironment surrounding endothelial cells influences and instructs them to form new blood vessels. The cells in the pathological tumor microenvironment release extracellular vesicles (EVs) for paracrine signaling. EVs have been shown to induce angiogenesis by communicating with endothelial cells, but the underlying molecular mechanisms are not well known. We have recently shown that the mechanosensitive ion channel transient receptor vanilloid 4 (TRPV4) expression and activity is significantly reduced in tumor endothelial cells (TEC), and that activation of TRPV4 normalized the tumor vasculature and improved cancer therapy. However, whether and how the tumor microenvironment downregulates TRPV4 and transforms the normal endothelial cell phenotype remains unknown. To explore this, we exposed normal human endothelial cells (hNEC) to human lung tumor cell conditioned media (TCM) and measured phenotypic changes and angiogenesis. We found that treatment with TCM transformed hNEC to a TEC-like phenotype (hTEC) as evidenced by increased expression of tumor endothelial cell marker 8 (TEM8) and exhibition of abnormal angiogenesis on 2D-Matrigels compared to normal hNEC. Mechanistically, expression and activity of TRPV4 was decreased in hTEC. Further, when pre-treated with exosome inhibitor GW4869, TCM failed to induce hNEC transformation to hTEC. Finally, addition of purified EVs from TCM induced transformation of hNEC to hTEC as evidenced by abnormal angiogenesis in vitro. Taken together, our results suggest that the pathological (tumor) microenvironment transforms normal endothelial cells into a tumor endothelial cell-like phenotype through EVs via the downregulation of TRPV4.

9.
FASEB J ; 33(1): 195-203, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29957061

RESUMEN

VEGF signaling via VEGF receptor-2 (VEGFR2) is a major regulator of endothelial cell (EC) functions, including angiogenesis. Although most studies of angiogenesis focus on soluble VEGF signaling, mechanical signaling also plays a critical role. Here, we examined the consequence of disruption of mechanical signaling on soluble signaling pathways. Specifically, we observed that small interfering RNA (siRNA) knockdown of a mechanosensitive ion channel, transient receptor potential vanilloid 4 (TRPV4), significantly reduced perinuclear (Golgi) VEGFR2 in human ECs with a concomitant increase in phosphorylation at Y1175 and membrane translocation. TRPV4 knockout (KO) ECs exhibited increased plasma membrane localization of phospho-VEGFR2 compared with normal ECs. The knockdown also increased phospho-VEGFR2 in whole cell lysates and membrane fractions compared with control siRNA-treated cells. siRNA knockdown of TRPV4 enhanced nuclear localization of mechanosensitive transcription factors, yes-associated protein/transcriptional coactivator with PDZ-binding motif via rho kinase, which were shown to increase VEGFR2 trafficking to the plasma membrane. Furthermore, TRPV4 deletion/knockdown enhanced VEGF-mediated migration in vitro and increased expression of VEGFR2 in vivo in the vasculature of TRPV4 KO tumors compared with wild-type tumors. Our results thus show that TRPV4 channels regulate VEGFR2 trafficking and activation to identify novel cross-talk between mechanical (TRPV4) and soluble (VEGF) signaling that controls EC migration and angiogenesis.-Kanugula, A. K., Adapala, R. K., Midha, P., Cappelli, H. C., Meszaros, J. G., Paruchuri, S., Chilian, W. M., Thodeti, C. K., Novel noncanonical regulation of soluble VEGF/VEGFR2 signaling by mechanosensitive ion channel TRPV4.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Movimiento Celular , Endotelio Vascular/patología , Mecanotransducción Celular , Canales Catiónicos TRPV/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Proliferación Celular , Endotelio Vascular/metabolismo , Humanos , Ratones , Fosforilación , Transducción de Señal , Canales Catiónicos TRPV/genética , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
Cancer Lett ; 442: 15-20, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401632

RESUMEN

The transient receptor potential vanilloid 4 (TRPV4) channel is a mechanosensor in endothelial cells (EC) that regulates cyclic strain-induced reorientation and flow-mediated nitric oxide production. We have recently demonstrated that TRPV4 expression is reduced in tumor EC and tumors grown in TRPV4KO mice exhibited enhanced growth and immature leaky vessels. However, the mechanism by which TRPV4 regulates tumor vascular integrity and metastasis is not known. Here, we demonstrate that VE-cadherin expression at the cell-cell contacts is significantly reduced in TRPV4-deficient tumor EC and TRPV4KO EC. In vivo angiogenesis assays with Matrigel of varying stiffness (700-900 Pa) revealed a significant stiffness-dependent reduction in VE-cadherin-positive vessels in Matrigel plugs from TRPV4KO mice compared with WT mice, despite an increase in vessel growth. Further, syngeneic Lewis Lung Carcinomatumor experiments demonstrated a significant decrease in VE-cadherin positive vessels in TRPV4KO tumors compared with WT. Functionally, enhanced tumor cell metastasis to the lung was observed in TRPV4KO mice. Our findings demonstrate that TRPV4 channels regulate tumor vessel integrity by maintaining VE-cadherin expression at cell-cell contacts and identifies TRPV4 as a novel target for metastasis.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Movimiento Celular , Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Neoplasias Pulmonares/irrigación sanguínea , Mecanotransducción Celular , Neovascularización Patológica , Canales Catiónicos TRPV/metabolismo , Animales , Antígenos CD/genética , Cadherinas/genética , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/secundario , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Uniones Intercelulares/genética , Uniones Intercelulares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
11.
Proc Natl Acad Sci U S A ; 116(1): 199-204, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559191

RESUMEN

Cysteinyl leukotrienes (cys-LTs) are proinflammatory mediators that enhance vascular permeability through distinct receptors (CysLTRs). We found that CysLT2R regulates angiogenesis in isolated mouse endothelial cells (ECs) and in Matrigel implants in WT mice and enhances EC contraction and permeability via the Rho-dependent myosin light chain 2 and vascular endothelial (VE)-cadherin axis. Since solid tumors utilize aberrant angiogenesis for their growth and metastasis and their vessels exhibit vascular hyperpermeability, we hypothesized that CysLT2R, via its actions on the endothelium, might regulate tumor growth. Both tumor growth and metastases of adoptively transferred syngeneic Lewis lung carcinoma (LLC) cells are significantly reduced in CysLT2R-null mice (Cysltr2-/-) compared with WT and CysLT1R-null mice (Cysltr1-/-). In WT recipients of LLC cells, CysLT2R expression is significantly increased in the tumor vasculature, compared with CysLT1R. Further, the tumor vasculature in Cysltr2-/- recipients exhibited significantly improved integrity, as revealed by increased pericyte coverage and decreased leakage of i.v.-administered Texas Red-conjugated dextran. Administration of a selective CysLT2R antagonist significantly reduced LLC tumor volume, vessel density, dextran leakage, and metastases in WT mice, highlighting CysLT2R as a VEGF-independent regulator of the vasculature promoting risk of metastasis. Thus, both genetic and pharmacological findings establish CysLT2R as a gateway for angiogenesis and EC dysregulation in vitro and ex vivo and in an in vivo model with a mouse tumor. Our data suggest CysLT2R as a possible target for intervention.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Neovascularización Patológica/inducido químicamente , Receptores de Leucotrienos/metabolismo , Animales , Permeabilidad Capilar/efectos de los fármacos , Ácidos Ciclohexanocarboxílicos/farmacología , Técnicas de Inactivación de Genes , Antagonistas de Leucotrieno/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/tratamiento farmacológico , Trasplante de Neoplasias , Neoplasias Experimentales , Neovascularización Patológica/tratamiento farmacológico , Ácidos Ftálicos/farmacología , Receptores de Leucotrienos/efectos de los fármacos
12.
Free Radic Biol Med ; 101: 10-19, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27682362

RESUMEN

We demonstrated previously that TRPV1-dependent regulation of coronary blood flow (CBF) is disrupted in diabetes. Further, we have shown that endothelial TRPV1 is differentially regulated, ultimately leading to the inactivation of TRPV1, when exposed to a prolonged pathophysiological oxidative environment. This environment has been shown to increase lipid peroxidation byproducts including 4-Hydroxynonenal (4-HNE). 4-HNE is notorious for producing protein post-translation modification (PTM) via reactions with the amino acids: cysteine, histidine and lysine. Thus, we sought to determine if 4-HNE mediated post-translational modification of TRPV1 could account for dysfunctional TRPV1-mediated signaling observed in diabetes. Our initial studies demonstrate 4-HNE infusion decreases TRPV1-dependent coronary blood flow in C57BKS/J (WT) mice. Further, we found that TRPV1-dependent vasorelaxation was suppressed after 4-HNE treatment in isolated mouse coronary arterioles. Moreover, we demonstrate 4-HNE significantly inhibited TRPV1 currents and Ca2+ entry utilizing patch-clamp electrophysiology and calcium imaging respectively. Using molecular modeling, we identified potential pore cysteines residues that, when mutated, could restore TRPV1 function in the presence of 4-HNE. Specifically, complete rescue of capsaicin-mediated activation of TRPV1 was obtained following mutation of pore Cysteine 621. Finally, His tag pull-down of TRPV1 in HEK cells treated with 4-HNE demonstrated a significant increase in 4-HNE binding to TRPV1, which was reduced in the TRPV1 C621G mutant. Taken together these data suggest that 4-HNE decreases TRPV1-mediated responses, at both the in vivo and in vitro levels and this dysfunction can be rescued via mutation of the pore Cysteine 621. Our results show the first evidence of an amino acid specific modification of TRPV1 by 4-HNE suggesting this 4-HNE-dependent modification of TRPV1 may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes.


Asunto(s)
Aldehídos/farmacología , Capsaicina/farmacología , Fármacos Cardiovasculares/farmacología , Diabetes Mellitus/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Potenciales de Acción/efectos de los fármacos , Aldehídos/antagonistas & inhibidores , Aldehídos/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Señalización del Calcio/efectos de los fármacos , Circulación Coronaria/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Cisteína/genética , Cisteína/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Arteria Femoral/metabolismo , Arteria Femoral/fisiopatología , Células HEK293 , Humanos , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Canales Catiónicos TRPV/genética , Vasodilatación/efectos de los fármacos
13.
Oncotarget ; 7(18): 25849-61, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27029071

RESUMEN

Targeting angiogenesis is considered a promising therapy for cancer. Besides curtailing soluble factor mediated tumor angiogenesis, understanding the unexplored regulation of angiogenesis by mechanical cues may lead to the identification of novel therapeutic targets. We have recently shown that expression and activity of mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) is suppressed in tumor endothelial cells and restoring TRPV4 expression or activation induces vascular normalization and improves cancer therapy. However, the molecular mechanism(s) by which TRPV4 modulates angiogenesis are still in their infancy. To explore how TRPV4 regulates angiogenesis, we have employed TRPV4 null endothelial cells (TRPV4KO EC) and TRPV4KO mice. We found that absence of TRPV4 (TRPV4KO EC) resulted in a significant increase in proliferation, migration, and abnormal tube formation in vitro when compared to WT EC. Concomitantly, sprouting angiogenesis ex vivo and vascular growth in vivo was enhanced in TRPV4KO mice. Mechanistically, we observed that loss of TRPV4 leads to a significant increase in basal Rho activity in TRPV4KO EC that corresponded to their aberrant mechanosensitivity on varying stiffness ECM gels. Importantly, pharmacological inhibition of the Rho/Rho kinase pathway by Y-27632 normalized abnormal mechanosensitivity and angiogenesis exhibited by TRPV4KO EC in vitro. Finally, Y-27632 treatment increased pericyte coverage and in conjunction with Cisplatin, significantly reduced tumor growth in TRPV4KO mice. Taken together, these data suggest that TRPV4 regulates angiogenesis endogenously via modulation of EC mechanosensitivity through the Rho/Rho kinase pathway and can serve as a potential therapeutic target for cancer therapy.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Neovascularización Patológica/metabolismo , Canales Catiónicos TRPV/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Carcinoma Pulmonar de Lewis/metabolismo , Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/patología
14.
J Allergy Clin Immunol ; 137(1): 289-298, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26255103

RESUMEN

BACKGROUND: Although arachidonic acid metabolites, cysteinyl leukotrienes (cys-LTs; leukotriene [LT] C4, LTD4, and LTE4), and prostaglandin (PG) E2 are generated at the site of inflammation, it is not known whether crosstalk exists between these 2 classes of inflammatory mediators. OBJECTIVE: We sought to determine the role of LTD4-PGE2 crosstalk in inducing vascular inflammation in vivo, identify effector cells, and ascertain specific receptors and pathways involved in vitro. METHODS: Vascular (ear) inflammation was assessed by injecting agonists into mouse ears, followed by measuring ear thickness and histology, calcium influx with Fura-2, phosphorylation and expression of signaling molecules by means of immunoblotting, PGD2 and macrophage inflammatory protein 1ß generation by using ELISA, and expression of transcripts by using RT-PCR. Candidate receptors and signaling molecules were identified by using antagonists and inhibitors and confirmed by using small interfering RNA. RESULTS: LTD4 plus PGE2 potentiated vascular permeability and edema, gearing the system toward proinflammation in wild-type mice but not in Kit(W-sh) mice. Furthermore, LTD4 plus PGE2, through cysteinyl leukotriene receptor 1 (CysLT1R) and E-prostanoid receptor (EP) 3, enhanced extracellular signal-regulated kinase (Erk) and c-fos phosphorylation, inflammatory gene expression, macrophage inflammatory protein 1ß secretion, COX-2 upregulation, and PGD2 generation in mast cells. Additionally, we uncovered that this synergism is mediated through Gi, protein kinase G, and Erk signaling. LTD4 plus PGE2-potentiated effects are partially sensitive to CysLT1R or EP3 antagonists but completely abolished by simultaneous treatment both in vitro and in vivo. CONCLUSIONS: Our results unravel a unique LTD4-PGE2 interaction affecting mast cells through CysLT1R and EP3 involving Gi, protein kinase G, and Erk and contributing to vascular inflammation in vivo. Furthermore, current results also suggest an advantage of targeting both CysLT1R and EP3 in attenuating inflammation.


Asunto(s)
Dinoprostona/inmunología , Leucotrieno D4/inmunología , Mastocitos/inmunología , Receptores de Leucotrienos/inmunología , Subtipo EP3 de Receptores de Prostaglandina E/inmunología , Animales , Permeabilidad Capilar , Línea Celular , Línea Celular Tumoral , Edema/inmunología , Humanos , Inflamación/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
Sci Rep ; 5: 14257, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26388427

RESUMEN

Endothelial cell proliferation is a critical event during angiogenesis, regulated by both soluble factors and mechanical forces. Although the proliferation of tumor cells is studied extensively, little is known about the proliferation of tumor endothelial cells (TEC) and its contribution to tumor angiogenesis. We have recently shown that reduced expression of the mechanosensitive ion channel TRPV4 in TEC causes aberrant mechanosensitivity that result in abnormal angiogenesis. Here, we show that TEC display increased proliferation compared to normal endothelial cells (NEC). Further, we found that TEC exhibit high basal ERK1/2 phosphorylation and increased expression of proliferative genes important in the G1/S phase of the cell cycle. Importantly, pharmacological activation of TRPV4, with a small molecular activator GSK1016790A (GSK), significantly inhibited TEC proliferation, but had no effect on the proliferation of NEC or the tumor cells (epithelial) themselves. This reduction in TEC proliferation by TRPV4 activation was correlated with a decrease in high basal ERK1/2 phosphorylation. Finally, using a syngeneic tumor model revealed that TRPV4 activation, with GSK, significantly reduced endothelial cell proliferation in vivo. Our findings suggest that TRPV4 channels regulate tumor angiogenesis by selectively inhibiting tumor endothelial cell proliferation.


Asunto(s)
Neoplasias/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Sistema de Señalización de MAP Quinasas , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Sulfonamidas/farmacología , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/genética , Regulación hacia Arriba
16.
J Cell Physiol ; 230(3): 595-602, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25161061

RESUMEN

Mast cells (MCs) are important effector cells in asthma and pulmonary inflammation, and their proliferation and maturation is maintained by stem cell factor (SCF) via its receptor, c-Kit. Cysteinyl leukotrienes (cys-LTs) are potent inflammatory mediators that signal through CysLT1 R and CysLT2 R located on the MC surface, and they enhance MC inflammatory responses. However, it is not known if SCF and cys-LTs cross-talk and influence MC hyperplasia and activation in inflammation. Here, we report the concerted effort of the growth factor SCF and the inflammatory mediator LTD4 in MC activation. Stimulation of MCs by LTD4 in the presence of SCF enhances c-Kit-mediated proliferative responses. Similarly, SCF synergistically enhances LTD4 -induced calcium, c-fos expression and phosphorylation, as well as MIP1ß generation in MCs. These findings suggest that integration of SCF and LTD4 signals may contribute to MC hyperplasia and hyper-reactivity during airway hyper-response and inflammation.


Asunto(s)
Proliferación Celular/genética , Inflamación/genética , Mastocitos/metabolismo , Mastocitosis/genética , Factor de Células Madre/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Leucotrieno D4/administración & dosificación , Mastocitos/efectos de los fármacos , Mastocitosis/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de Leucotrienos/metabolismo , Transducción de Señal/efectos de los fármacos
17.
J Clin Invest ; 124(12): 5225-38, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25365224

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disorder with no effective medical treatments available. The generation of myofibroblasts, which are critical for fibrogenesis, requires both a mechanical signal and activated TGF-ß; however, it is not clear how fibroblasts sense and transmit the mechanical signal(s) that promote differentiation into myofibroblasts. As transient receptor potential vanilloid 4 (TRPV4) channels are activated in response to changes in plasma membrane stretch/matrix stiffness, we investigated whether TRPV4 contributes to generation of myofibroblasts and/or experimental lung fibrosis. We determined that TRPV4 activity is upregulated in lung fibroblasts derived from patients with IPF. Moreover, TRPV4-deficient mice were protected from fibrosis. Furthermore, genetic ablation or pharmacological inhibition of TRPV4 function abrogated myofibroblast differentiation, which was restored by TRPV4 reintroduction. TRPV4 channel activity was elevated when cells were plated on matrices of increasing stiffness or on fibrotic lung tissue, and matrix stiffness-dependent myofibroblast differentiation was reduced in response to TRVP4 inhibition. TRPV4 activity modulated TGF-ß1-dependent actions in a SMAD-independent manner, enhanced actomyosin remodeling, and increased nuclear translocation of the α-SMA transcription coactivator (MRTF-A). Together, these data indicate that TRPV4 activity mediates pulmonary fibrogenesis and suggest that manipulation of TRPV4 channel activity has potential as a therapeutic approach for fibrotic diseases.


Asunto(s)
Diferenciación Celular , Pulmón/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Canales Catiónicos TRPV/biosíntesis , Regulación hacia Arriba , Animales , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacología , Bleomicina/efectos adversos , Bleomicina/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Pulmón/patología , Ratones , Ratones Mutantes , Miofibroblastos/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Canales Catiónicos TRPV/genética , Transactivadores/genética , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
18.
Sci Rep ; 3: 3274, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24253666

RESUMEN

Cysteinyl leukotrienes (cys-LTs), LTC4, LTD4, LTE4 are potent inflammatory lipid mediators that act through two distinct G-protein-coupled receptors, CysLT1R and CysLT2R. Although cys-LTs are shown to induce vascular leakage and atherosclerosis, the molecular mechanism by which cys-LTs modulate endothelial function is not known. Here, we show that cys-LTs (LTC4 and LTD4) induce robust calcium influx in human umbilical vein endothelial cells (HUVECs) through CysLT2R, but not CysLT1R. Further, cys-LT treatment induced endothelial cell (EC) contraction leading to monolayer disruption via CysLT2R/Rho kinase dependent pathway. Furthermore, stimulation with cys-LTs potentiated TNFα-induced VCAM-1 expression and leukocyte recruitment to ECs through CysLT2R. In contrast, we found that both LTC4 and LTD4 stimulated EC proliferation through CysLT1R. Taken together, these results suggest that cys-LTs induce endothelial inflammation and proliferation via CysLT2R/Rho kinase and CysLT1R/Erk dependent pathways, respectively, which play critical role in the etiology of cardiovascular diseases such as atherosclerosis and myocardial infarction.


Asunto(s)
Cisteína/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Leucotrienos/farmacología , Receptores de Leucotrienos/metabolismo , Transducción de Señal/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Quinasas Asociadas a rho/metabolismo
19.
PLoS One ; 8(8): e71536, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977066

RESUMEN

Cysteinyl leukotrienes (cys-LTs) are a group of lipid mediators that are potent bronchoconstrictors, powerful inducers of vascular leakage and potentiators of airway hyperresponsiveness. Cys-LTs play an essential role in asthma and are synthesized as well as activated in mast cells (MCs). Cys-LTs relay their effects mainly through two known GPCRs, CysLT1R and CysLT2R. Although protein kinase C (PKC) isoforms are implicated in the regulation of CysLT1R function, neither the role of PKCs in cys-LT-dependent MC inflammatory signaling nor the involvement of specific isoforms in MC function are known. Here, we show that PKC inhibition augmented LTD4 and LTE4-induced calcium influx through CysLT1R in MCs. In contrast, inhibition of PKCs suppressed c-fos expression as well MIP1ß generation by cys-LTs. Interestingly, cys-LTs activated both PKCα and PKCε isoforms in MC. However, knockdown of PKCα augmented cys-LT mediated calcium flux, while knockdown of PKCε attenuated cys-LT induced c-fos expression and MIP1ß generation. Taken together, these results demonstrate for the first time that cys-LT signaling downstream of CysLT1R in MCs is differentially regulated by two distinct PKCs which modulate inflammatory signals that have significant pathobiologic implications in allergic reactions and asthma pathology.


Asunto(s)
Mastocitos/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Leucotrienos/metabolismo , Transducción de Señal , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Quimiocina CCL4/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Cisteína/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Isoenzimas/metabolismo , Leucotrieno E4/farmacología , Leucotrienos/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/enzimología , Modelos Biológicos , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Am J Physiol Heart Circ Physiol ; 303(2): H216-23, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22610171

RESUMEN

We have previously shown transient receptor potential vanilloid subtype 1 (TRPV1) channel-dependent coronary function is compromised in pigs with metabolic syndrome (MetS). However, the mechanisms through which TRPV1 channels couple coronary blood flow to metabolism are not fully understood. We employed mice lacking TRPV1 [TRPV1((-/-))], db/db diabetic, and control C57BKS/J mice to determine the extent to which TRPV1 channels modulate coronary function and contribute to vascular dysfunction in diabetic cardiomyopathy. Animals were subjected to in vivo infusion of the TRPV1 agonist capsaicin to examine the hemodynamic actions of TRPV1 activation. Capsaicin (1-100 µg·kg(-1)·min(-1)) dose dependently increased coronary blood flow in control mice, which was inhibited by the TRPV1 antagonist capsazepine or the nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (L-NAME). In addition, the capsaicin-mediated increase in blood flow was attenuated in db/db mice. TRPV1((-/-)) mice exhibited no changes in coronary blood flow in response to capsaicin. Vasoreactivity studies in isolated pressurized mouse coronary microvessels revealed a capsaicin-dependent relaxation that was inhibited by the TRPV1 inhibitor SB366791 l-NAME and to the large conductance calcium-sensitive potassium channel (BK) inhibitors iberiotoxin and Penetrim A. Similar to in vivo responses, capsaicin-mediated relaxation was impaired in db/db mice compared with controls. Changes in pH (pH 7.4-6.0) relaxed coronary vessels contracted to the thromboxane mimetic U46619 in all three groups of mice; however, pH-mediated relaxation was blunted in vessels obtained from TRPV1((-/-)) and db/db mice compared with controls. Western blot analysis revealed decreased myocardial TRPV1 protein expression in db/db mice compared with controls. Our data reveal TRPV1 channels mediate coupling of myocardial blood flow to cardiac metabolism via a nitric oxide-dependent, BK channel-dependent pathway that is corrupted in diabetes.


Asunto(s)
Vasos Coronarios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Óxido Nítrico/metabolismo , Canales Catiónicos TRPV/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Anilidas/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Cinamatos/farmacología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiopatología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , NG-Nitroarginina Metil Éster/farmacología , Péptidos/farmacología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/biosíntesis , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA