Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proteomics Clin Appl ; : e2300136, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38571380

RESUMEN

BACKGROUND: Breast cancer (BC) is the second leading cause of cancer-related deaths among women, primarily due to metastases to other organs rather than the primary tumor. METHODS: In this study, a comprehensive analysis of plasma proteomics and metabolomics was conducted on a cohort of 51 BC patients. Potential biomarkers were screened by the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest algorithm. Additionally, enzyme-linked immunosorbent assay (ELISA) kits and untargeted metabolomics were utilized to validate the prognostic biomarkers in an independent cohort. RESULTS: In the study, extracellular matrix (ECM)-related functional enrichments were observed to be enriched in BC cases with bone metastases. Proteins dysregulated in retinol metabolism in liver metastases and leukocyte transendothelial migration in lung metastases were also identified. Machine learning models identified specific biomarker panels for each metastasis type, achieving high diagnostic accuracy with area under the curve (AUC) of 0.955 for bone, 0.941 for liver, and 0.989 for lung metastases. CONCLUSIONS: For bone metastasis, biomarkers such as leucyl-tryptophan, LysoPC(P-16:0/0:0), FN1, and HSPG2 have been validated. dUDP, LPE(18:1/0:0), and aspartylphenylalanine have been confirmed for liver metastasis. For lung metastasis, dUDP, testosterone sulfate, and PE(14:0/20:5) have been established.

2.
Fitoterapia ; 175: 105959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615754

RESUMEN

Lysimachia capillipes Hemsl., a traditional Chinese medicine (TCM), is commonly prescribed for its anti-inflammatory and anti-tumor properties. Pharmacological studies have demonstrated that Lysimachia capillipes Hemsl. saponins (LCS) are the primary bioactive component. However, its mechanism for treating colorectal cancer (CRC) is still unknown. Increasing evidence suggests a close relationship between CRC, intestinal flora, and host metabolism. Thus, this study aims to investigate the mechanism of LCS amelioration of CRC from the perspective of the gut microbiome and metabolome. As a result, seven gut microbiotas and fourteen plasma metabolites were significantly altered between the control and model groups. Among them, one gut microbiota genera (Monoglobus) and six metabolites (Ureidopropionic acid, Cytosine, L-Proline, 3-hydroxyanthranilic acid, Cyclic AMP and Suberic acid) showed the most pronounced callback trend after LCS administration. Subsequently, the correlation analysis revealed significant associations between 68 pairs of associated metabolites and gut microbes, with 13 pairs of strongly associated metabolites regulated by the LCS. Taken together, these findings indicate that the amelioration of CRC by LCS is connected to the regulation of intestinal flora and the recasting of metabolic abnormalities. These insights highlight the potential of LCS as a candidate drug for the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Primulaceae , Saponinas , Saponinas/farmacología , Saponinas/aislamiento & purificación , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Ratones , Primulaceae/química , Neoplasias Colorrectales/tratamiento farmacológico , Masculino , Metaboloma/efectos de los fármacos , Ratones Endogámicos BALB C , Lysimachia
3.
Mol Ther Nucleic Acids ; 33: 738-748, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37662968

RESUMEN

Gene editing with a CRISPR/Cas system is a novel potential strategy for treating human diseases. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) δ suppresses retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Here we show that an innovative system of adeno-associated virus (AAV)-mediated CRISPR/nuclease-deficient (d)CasX fused with the Krueppel-associated box (KRAB) domain is leveraged to block (81.2% ± 6.5%) in vitro expression of p110δ, the catalytic subunit of PI3Kδ, encoded by Pik3cd. This CRISPR/dCasX-KRAB (4, 269 bp) system is small enough to be fit into a single AAV vector. We then document that recombinant AAV serotype (rAAV)1 efficiently transduces vascular endothelial cells from pathologic retinal vessels, which show high expression of p110δ; furthermore, we demonstrate that blockade of retinal p110δ expression by intravitreally injected rAAV1-CRISPR/dCasX-KRAB targeting the Pik3cd promoter prevents (32.1% ± 5.3%) retinal p110δ expression as well as pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. These data establish a strong foundation for treating pathological angiogenesis by AAV-mediated CRISPR interference with p110δ expression.

4.
Mol Omics ; 19(10): 800-809, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37642188

RESUMEN

Thyroid cancer (TC) is the most common endocrine malignancy with increasing incidence in recent years. Fine-needle aspiration biopsy (FNAB), as a gold standard for the initial evaluation of thyroid nodules, fails to cover all the cytopathologic conditions resulting in overdiagnosis. There is an urgent need for a better classification of thyroid cancer from benign thyroid nodules (BTNs). Here, data independent acquisition (DIA)-based proteomics and untargeted metabolomics in plasma samples of 10 patients with TC and 15 patients with BTNs were performed. Key proteins and metabolites were identified specific to TC, and an independent cohort was used to validate the potential biomarkers using enzyme-linked immunosorbent assay (ELISA). In total, 1429 proteins and 1172 metabolites were identified. Principal component analysis showed a strong overlap at the proteomic level and a significant discrimination at the metabolomic level between the two groups, indicating a more drastic disturbance in the metabolome of thyroid cancer. Integrated analysis of proteomics and metabolomics shows glycerophospholipid metabolism and arachidonic acid metabolism as key regulatory pathways. Furthermore, a multi-omics biomarker panel was developed consisting of LCAT, GPX3 and leukotriene B4. Based on the AUC value for the discovery set, the classification performance was 0.960. The AUC value of the external validation set was 0.930. Altogether, our results will contribute to the clinical application of potential biomarkers in the diagnosis of thyroid cancer.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico , Nódulo Tiroideo/metabolismo , Nódulo Tiroideo/patología , Proteómica , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Biomarcadores , Metabolómica/métodos
5.
J Pharm Biomed Anal ; 234: 115548, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390605

RESUMEN

Colorectal cancer is a highly prevalent malignancy that threatens human health worldwide. Despite the availability of chemotherapy as a primary treatment option, individuals with CRC undergoing frequent chemotherapy are susceptible to developing drug resistance, which can result in poor treatment outcomes. Consequently, there is an urgent need to discover new bioactive compounds for the treatment of CRC. Capilliposide A is a triterpenoid saponin that is extracted from Lysimachia capillipes Hemsl. Although it has been reported that LC-A exhibits good bioactivity, its metabolic profile and potential mechanism underlying its anti-CRC effects remain unknown. In this study, the metabolic products of LC-A in rat plasma, feces, and urine were identified using an LC-MS platform. In addition, LC-MS-based metabolomics was employed to investigate the mechanism of LC-A against CRC. The results showed that LC-A significantly inhibited CRC cell proliferation, attenuated tumor growth, and alleviated metabolic abnormalities in CRC-bearing mice. Furthermore, the levels of p-cresol sulfate and phenylacetylglycine in CRC model plasma decreased, with an increment in sphingosine 1-phosphate, D-tryptophan, and L-2-aminoadipic acid. These metabolite levels can be reversed by LC-A treatment. These metabolite alterations were related to the sphingolipid and amino acid metabolic pathways, demonstrating that LC-A anti-CRC effects were regulated through the modulation of underlying metabolism. Additionally, seven metabolites of LC-A were characterized in rat feces, plasma, and urine. This study offers a scientific foundation for elucidating the metabolism of LC-A and its treatment of colorectal cancer.


Asunto(s)
Metabolómica , Neoplasias , Ratas , Ratones , Humanos , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas , Metabolómica/métodos , Metaboloma
6.
Phytother Res ; 37(7): 2902-2914, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36867511

RESUMEN

Capilliposide B (CPS-B), a novel oleanane triterpenoid saponin derived from Lysimachia capillipes Hemsl, is a potent anticancer agent. However, its anticancer mechanism remains elusive. In the present study, we demonstrated the potent anti-tumor activity and molecular mechanism of CPS-B both in vitro and in vivo. Proteomic analysis using isobaric tags for relative and absolute quantitation techniques suggested that CPS-B modulated autophagy in prostate cancer (PC). Moreover, Western blotting showed that both autophagy and epithelial-mesenchymal transition occurred place after CPS-B treatment in vivo, which was also proven in PC-3 cancer cells. We deduced that CPS-B inhibited migration by inducing autophagy. We examined the accumulation of reactive oxygen species (ROS) in cells, and in downstream pathways, LKB1 and AMPK were activated while mTOR was inhibited. Transwell experiment results showed that CPS-B inhibited the metastasis of PC-3 cells and that this effect was significantly attenuated after pretreatment with chloroquine, indicating that CPS-B inhibited metastasis via autophagy induction. Altogether, these data suggest that CPS-B is a potential therapeutic agent for cancer treatment that acts by inhibiting migration through the ROS/AMPK/mTOR signaling pathway.


Asunto(s)
Neoplasias de la Próstata , Saponinas , Triterpenos , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteómica , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Autofagia , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral
7.
Cells ; 12(2)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672142

RESUMEN

Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-ß2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-ß2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-ß2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-ß2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-ß2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-ß2-induced EMT, uncovering hindrance of TGF-ß2-induced expression of p110δ as a novel approach to inhibit PVR.


Asunto(s)
Epitelio Pigmentado de la Retina , Vitreorretinopatía Proliferativa , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vitreorretinopatía Proliferativa/metabolismo , FN-kappa B/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo
8.
Plant Physiol Biochem ; 192: 308-319, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288661

RESUMEN

Tobacco has a high economic value as the largest cash crop worldwide. The quality of flue-cured tobacco is closely related to the overall status of compounds in fresh tobacco leaves, and the aroma precursor plays a key role in the aroma quality of flue-cured tobacco. The untargeted metabolomics and label-free quantitative proteomics analysis of tobacco leaves in three growth stages (root stretching, prosperous growth, and maturation) retrieved 243 metabolites and 4313 proteins (944 differentially expressed proteins), which showed that carbohydrate, amino acid, and fatty acid metabolism varies among the three growth stages. Also, the most of amino acids, organic acids, fatty acids, and polyphenols reduced in the vegetative growth stage, while increased in the reproductive growth stage. On the other hand, alkaloids such as nicotine, nornicotine, and anatabine increased continuously in tobacco leaves during the three growth stages. This study helps us understand the growth and development characteristics of Yun87 flue-cured tobacco in the field before harvest, and it provides a certain omics basis for the industrial crop flue-cured tobacco.

9.
ACS Omega ; 7(37): 33295-33306, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157728

RESUMEN

Tobacco, as an important cash crop and model plant, has been the subject of various types of research. The quality of flue-cured tobacco products depends on the compound collection of tobacco leaves, including pigments, carbohydrates, amino acids, polyphenols, and alkaloid aroma precursors. The present study investigates tobacco seedling organs (leaf, stem, and root) with the assistance of label-free proteomic technology and untargeted metabonomic technology. We analyzed 4992 proteins and 298 metabolites obtained in the leaf, stem, and root groups and found that there were significant differences in both primary and secondary metabolism processes involved in aroma precursor biosynthesis, such as carbohydrate metabolism, energy metabolism, and amino acid biosynthesis, and phenylpropanoid, flavonoid, and alkaloid biosynthesis. The findings showed that the contents of alkaloid metabolites such as nornicotine, anatabine, anatalline, and myosmine were significantly higher in tobacco roots than in leaves and stems at the seedling stage.

10.
Mol Carcinog ; 61(12): 1128-1142, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121321

RESUMEN

Guangsangon E (GSE) is a natural product separated from Morus alba L. It has been reported to treat lung cancer through autophagy. However, whether GSE is effective in repressing triple-negative breast cancer (TNBC) cells is yet to be elucidated. In the present study, GSE inhibited cell growth of MDA-MB-231, MDA-MB-453, and MDA-MB-468 cells. Moreover, GSE induced mitochondrial dysfunction, including membrane potential loss, mitochondria fission, and reactive oxygen species accumulation, and finally led to mitophagy-related non-apoptotic cell death. In the xenograft tumor nude mice, GSE treatment significantly reduced the size and weight of MDA-MB-231 tumors. The tumor inhibition rates of GSE treatment were 49.68% (low-dose) and 48.73% (high-dose). In summary, GSE is a potential anticancer drug available for treating TNBC with apoptosis resistance.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Mitofagia , Ratones Desnudos , Línea Celular Tumoral , Apoptosis , Mitocondrias/metabolismo
11.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889271

RESUMEN

Eurycomanone (EN) is one of the representative quassinoid diterpenoids from roots of Eurycoma longifolia Jack, a natural medicine that is widely distributed in Southeast Asia. Previous studies showed that EN induces cancer cell apoptosis and exhibits anti-cancer activity, but the molecular mechanism of EN against cancer has still not been elucidated. In this study, we examined the regulatory effect of EN on autophagy to reveal the mechanism of EN-mediated colon cancer growth inhibition. First, we found that EN is able to inhibit colon cancer cell proliferation and colony formation. The angiogenesis level in cancer cells was inhibited as well. Next, the treatment of EN led to the suppression of autophagy, which was characterized by the downregulation of the LC3-II level and the formation of GFP-LC3 puncta under EN treatment in colon cancer. Moreover, we revealed that the mTOR signaling pathway was activated by EN in a time- and concentration-dependent manner. Finally, autophagy induction protected colon cancer cells from EN treatment, suggesting that autophagy improves cell survival. Taken together, our findings revealed the mechanism of EN against colon cancer through inhibiting autophagy and angiogenesis in colon cancer, supporting that the autophagy inhibitor EN could be developed to be a novel anti-cancer agent.


Asunto(s)
Neoplasias del Colon , Diterpenos , Eurycoma , Cuassinas , Autofagia , Neoplasias del Colon/tratamiento farmacológico , Diterpenos/farmacología , Humanos , Neovascularización Patológica , Extractos Vegetales/farmacología , Cuassinas/farmacología
12.
Lab Invest ; 102(12): 1296-1303, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35854067

RESUMEN

Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after rhegmatogenous retinal detachment surgery and open-globe traumatic injury. Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) δ. While PI3Kδ is primarily expressed in leukocytes, its expression is also considerably high in retinal pigment epithelial (RPE) cells, which play a crucial part in the PVR pathogenesis. Herein we show that GeoMx Digital Spatial Profiling uncovered strong expression of fibronectin in RPE cells within epiretinal membranes from patients with PVR, and that idelalisib (10 µM) inhibited Akt activation, fibronectin expression and collagen gel contraction induced by transforming growth factor (TGF)-ß2 in human RPE cells. Furthermore, we discovered that idelalisib at a vitreal concentration of 10 µM, a non-toxic dose to the retina, prevented experimental PVR induced by intravitreally injected RPE cells in rabbits assessed by experienced ophthalmologists using an indirect ophthalmoscope plus a + 30 D fundus lens, electroretinography, optical coherence tomography and histological analysis. These data suggested idelalisib could be harnessed for preventing patients from PVR.


Asunto(s)
Fibronectinas , Vitreorretinopatía Proliferativa , Animales , Humanos , Conejos , Fibronectinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Vitreorretinopatía Proliferativa/metabolismo , Quinazolinonas/farmacología , Quinazolinonas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 13(4): 2073-2087, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35718751

RESUMEN

BACKGROUND: Despite recent advances in understanding the pathophysiology of cancer cachexia, prevention/treatment of this debilitating disease remains an unmet medical need. METHODS: We developed an integrated, multi-tiered strategy involving both in vitro and in vivo muscle atrophy platforms to identify traditional Chinese medicine (TCM)-based anti-cachectic agents. In the initial screening, we used inflammatory cytokine-induced atrophy of C2C12 myotubes as a phenotypic screening platform to assess the protective effects of TCMs. The selected TCMs were then evaluated for their abilities to protect Caenorhabditis elegans from age-related reduction of mobility and contractility, followed by the C-26 colon adenocarcinoma mouse model of cachexia to confirm the anti-muscle atrophy effects (body/skeletal muscle weights, fibre size distribution, grip strengths, and serum IL-6). Transcriptome analysis, quantitative real-time polymerase chain reaction, and immunoblotting were performed to gain understanding of the potential mechanism(s) by which effective TCM protected against C26 tumour-induced muscle atrophy. RESULTS: Of 29 widely used TCMs, Dioscorea radix (DR) and Mu Dan Pi (MDP) showed a complete protection (all P values, 0.0002) vis-à-vis C26 conditioned medium control in the myotube atrophy platform. MDP exhibited a unique ability to ameliorate age-associated decreases in worm mobility, accompanied by improved total body contractions, relative to control (P < 0.0001 and <0.01, respectively), which, however, was not noted with DR. This differential in vivo protective effect between MDP and DR was also confirmed in the C-26 mouse model. MDP at 1000 mg/kg (MDP-H) was effective in protecting body weight loss (P < 0.05) in C-26 tumour-bearing mice without changing food or water intake, accompanied by the restoration of the fibre size distribution of hindleg skeletal muscles (P < 0.0001) and the forelimb grip strength (P < 0.05). MDP-treated C-26-tumour-bearing mice were alert, showed normal posture and better body conditions, and exhibited lower serum IL-6 levels (P = 0.06) relative to vehicle control. This decreased serum IL-6 was associated with the in vitro suppressive effect of MDP (25 and 50 µg/mL) on IL-6 secretion into culture medium by C26 cells. RNA-seq analysis, followed by quantitative real-time polymerase chain reaction and/or immunoblotting, shows that MDP's anti-cachectic effect was attributable to its ability to reverse the C-26 tumour-induced re-programming of muscle homoeostasis-associated gene expression, including that of two cachexia drivers (MuRF1 and Atrogin-1), in skeletal muscles. CONCLUSIONS: All these findings suggest the translational potential of MDP to foster new strategies for the prevention and/or treatment of cachexia. The protective effect of MDP on other types of muscle atrophy such as sarcopenia might warrant investigations.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Adenocarcinoma/patología , Animales , Caquexia/etiología , Caquexia/genética , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Interleucina-6 , Medicina Tradicional China , Ratones , Atrofia Muscular/patología
14.
ACS Omega ; 7(13): 11343-11352, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35415355

RESUMEN

Moracins, a kind of 2-phenyl-benzofuran compound from Moraceae, serve as phytoalexins with antimicrobial, anti-inflammatory, antitumor, and antidiabetes activities and respond to biotic and abiotic stresses, while their biosynthetic pathway and regulatory mechanism remain unclear. Here, we report a de novo transcriptome sequencing for different tissues of seedlings, as well as leaves under different stresses, in M. alba L. A total of 88 282 unigenes were assembled with an average length of 937 bp, and 82.2% of them were annotated. On the basis of the differential expression analysis and enzymatic activity assays in vitro, moracins were traced to the phenylpropanoid pathway, and a putative biosynthetic pathway of moracins was proposed. Unigenes coding key enzymes in the pathway were identified and their expression levels were verified by real-time quantitative reverse transcription PCR (qRT-PCR). Particularly, a p-coumaroyl CoA 2'-hydroxylase was presumed to be involved in the biosynthesis of stilbenes and deoxychalcones in mulberry. Additionally, the transcription factors that might participate in the regulation of moracin biosynthesis were obtained by coexpression analysis. These results shed light on the putative biosynthetic pathway of moracins, providing a basis for further investigation in functional characterization and transcriptional regulation of moracin biosynthesis in mulberry.

15.
J Photochem Photobiol B ; 230: 112443, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35429828

RESUMEN

Morus alba is a woody shrub of the family Moraceae and used as traditional Chinese medicine for a long history. Ultraviolet-B (UV-B) radiation, as a kind of abiotic stress factor, affected the growth and secondary metabolism in M. alba. Previous studies indicated that the contents of several secondary metabolites such as moracin N, chalcomaricin were significantly increased under high level UV-B radiation and dark incubation in M. alba leaves. To reveal the response mechanism under UV-B radiation and dark incubation in M. alba leaves, SWATH-based quantitative proteomic analysis was performed. Totally, 716 proteins were identified and quantified in the control, UVB, and UVD groups. Among them, 123 proteins and 96 proteins were identified as differentially abundant proteins in UVB group and UVD groups, respectively. Proteins related to photosynthesis, amino acid biosynthesis, and tocopherol biosynthesis were significantly altered in UVB group, while proteins related to the biosynthesis of phenolic compounds were significantly altered in UVD group. In addition, the abundances of proteins involved in the ubiquitin-proteasome system (UPS) were significantly increased in both UVB and UVD groups, indicating that UPS combined with secondary mechanism participated in the resistance to UV-B radiation and dark incubation. The obtained results provide novel insight into the effects of high level UV-B radiation on M. alba leaves and on the strategies used for maximizing the chemical constituents and the medicinal value of the M. alba leaves.


Asunto(s)
Morus , Morus/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Proteómica , Rayos Ultravioleta
16.
J Proteomics ; 254: 104410, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923174

RESUMEN

Clematis terniflora DC. is an important medicinal plant from the family Ranunculaceae. A previous study has shown that active ingredients in C. terniflora, such as flavonoids and coumarins, are increased under ultraviolet B radiation (UV-B) and dark treatment and that the numbers of genes related to the tricarboxylic acid cycle and mitochondrial electron transport chain (mETC) are changed. To uncover the mechanism of the response to UV-B radiation and dark treatment in C. terniflora, mitochondrial proteomics was performed. The results showed that proteins related to photorespiration, mitochondrial membrane permeability, the tricarboxylic acid cycle, and the mETC mainly showed differential expression profiles. Moreover, the increase in alternative oxidase indicated that another oxygen-consuming respiratory pathway in plant mitochondria was induced to minimize mitochondrial reactive oxygen species production. These results suggested that respiration and mitochondrial membrane permeability were deeply influenced to avoid energy consumption and maintain energy balance under UV-B radiation and dark treatment in C. terniflora leaf mitochondria. Furthermore, oxidative phosphorylation was able to regulate intracellular oxygen balance to resist oxidative stress. This study improves understanding of the function of mitochondria in response to UV-B radiation and dark treatment in C. terniflora. SIGNIFICANCE: C. terniflora was an important traditional Chinese medicine for anti-inflammatory. Previous study showed that the contents of coumarins which were the main active ingredient in C. terniflora were induced by UV-B radiation and dark treatment. In the present study, to uncover the regulatory mechanism of metabolic changes in C. terniflora, mitochondrial proteomics analysis of leaves was performed. The results showed that photorespiration and oxidative phosphorylation pathways were influenced under UV-B radiation and dark treatment. Mitochondria in C. terniflora leaf played a crucial role in energy mechanism and regulation of cellular oxidation-reduction to maintain cell homeostasis under UV-B radiation followed with dark treatment.


Asunto(s)
Clematis , Clematis/genética , Metabolismo Energético , Mitocondrias/metabolismo , Hojas de la Planta/metabolismo , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo
17.
Front Genet ; 12: 646818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512711

RESUMEN

BACKGROUND: Stomach adenocarcinoma (STAD) is the most common histological type of stomach cancer, which causes a considerable number of deaths worldwide. This study aimed to identify its potential biomarkers with the notion of revealing the underlying molecular mechanisms. METHODS: Gene expression profile microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The "limma" R package was used to screen the differentially expressed genes (DEGs) between STAD and matched normal tissues. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for function enrichment analyses of DEGs. The STAD dataset from The Cancer Genome Atlas (TCGA) database was used to identify a prognostic gene signature, which was verified in another STAD dataset from the GEO database. CIBERSORT algorithm was used to characterize the 22 human immune cell compositions. The expression of LRFN4 and CTHRC1 in tissues was determined by quantitative real-time PCR from the patients recruited to the present study. RESULTS: Three public datasets including 90 STAD patients and 43 healthy controls were analyzed, from which 44 genes were differentially expressed in all three datasets. These genes were implicated in biological processes including cell adhesion, wound healing, and extracellular matrix organization. Five out of 44 genes showed significant survival differences. Among them, CTHRC1 and LRFN4 were selected for construction of prognostic signature by univariate Cox regression and stepwise multivariate Cox regression in the TCGA-STAD dataset. The fidelity of the signature was evaluated in another independent dataset and showed a good classification effect. The infiltration levels of multiple immune cells between high-risk and low-risk groups had significant differences, as well as two immune checkpoints. TIM-3 and PD-L2 were highly correlated with the risk score. Multiple signaling pathways differed between the two groups of patients. At the same time, the expression level of LRFN4 and CTHRC1 in tissues analyzed by quantitative real-time PCR were consistent with the in silico findings. CONCLUSION: The present study constructed the prognostic signature by expression of CTHRC1 and LRFN4 for the first time via comprehensive bioinformatics analysis, which provided the potential therapeutic targets of STAD for clinical treatment.

18.
J Cell Mol Med ; 25(19): 9102-9111, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34432370

RESUMEN

Retinal pigment epithelial (RPE) cells are the major cell type in the epi- or sub-retinal membranes in the pathogenesis of proliferative vitreoretinopathy (PVR), which is a blinding fibrotic eye disease and still short of effective medicine. The purpose of this study is to demonstrate whether Chalocomoracin (CMR), a novel purified compound from fungus-infected mulberry leaves, is able to inhibit vitreous-induced signalling events and cellular responses intrinsic to PVR. Our studies have revealed that the CMR IC50 for ARPE-19 cells is 35.5 µmol/L at 72 hours, and that 5 µmol/L CMR inhibits vitreous-induced Akt activation and p53 suppression; in addition, we have discovered that this chemical effectively blocks vitreous-stimulated proliferation, migration and contraction of ARPE-19 cells, suggesting that CMR is a promising PVR prophylactic.


Asunto(s)
Benzofuranos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Cuerpo Vítreo/metabolismo , Animales , Benzofuranos/química , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Conejos , Epitelio Pigmentado de la Retina/citología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
19.
Rapid Commun Mass Spectrom ; 35(19): e9172, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34318544

RESUMEN

RATIONALE: Beta vulgaris L. has attracted increasing attention because of its broad application. The root of B. vulgaris L. (beetroot) possesses many excellent biological properties such as antianemic, anti-inflammatory, antihypertensive, antioxidant, anticarcinogenic, antipyretic, antibacterial, detoxicant, and diuretic. The chemical constituents of beetroot play a major role in the research on beetroot application and development. At present, no systematic identification study that focuses on the chemical constituents of beetroot has been reported. METHODS: This study investigated a three-step strategy comprising phytochemical profiling, prototype profiling, and metabolism of its correlative metabolites in vivo using ultra-performance liquid chromatography tandem quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). RESULTS: UPLC-QTOF-MS/MS technique proved to be a rapid, sensitive, and reliable method for monitoring the specific ingredients as well as the whole chemical constituents in beetroot. In sum, 95 phytochemical compounds, 51 prototype compounds, and 37 derived metabolites in vivo were found in beetroot. CONCLUSIONS: The main metabolic pathways were sulfonation, glucuronidation, methylation/sulfonation, and methylation. The present findings provided the phytochemical basis both in vitro and in vivo for future application.


Asunto(s)
Beta vulgaris/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Fitoquímicos/química , Fitoquímicos/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Beta vulgaris/química , Femenino , Metaboloma , Ratones , Ratones Endogámicos ICR , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo
20.
Front Plant Sci ; 12: 794906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087555

RESUMEN

Mahonia bealei (M. bealei) is a traditional Chinese medicine containing a high alkaloid content used to treat various diseases. Generally, only dried root and stem are used as medicines, considering that the alkaloid content in M. bealei leaves is lower than in the stems and roots. Some previous research found that alkaloid and flavonoid contents in the M. bealei leaves may increase when exposed to ultraviolet B (UV-B) radiation. However, the underlying mechanism of action is still unclear. In this study, we used titanium dioxide material enrichment and mass-based label-free quantitative proteomics techniques to explore the effect and mechanism of M. bealei leaves when exposed to UV-B treatment. Our data suggest that UV-B radiation increases the ATP content, photosynthetic pigment content, and some enzymatic/nonenzymatic indicators in the leaves of M. bealei. Moreover, phosphoproteomics suggests phosphoproteins related to mitogen-activated protein kinase (MAPK) signal transduction and the plant hormone brassinosteroid signaling pathway as well as phosphoproteins related to photosynthesis, glycolysis, the tricarboxylic acid cycle, and the amino acid synthesis/metabolism pathway are all affected by UV-B radiation. These results suggest that the UV-B radiation activates the oxidative stress response, MAPK signal transduction pathway, and photosynthetic energy metabolism pathway, which may lead to the accumulation of secondary metabolites in M. bealei leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA