Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Langmuir ; 36(27): 7850-7860, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32551658

RESUMEN

The present study investigated oxidation reactivity and hot lubricity of a sodium silicate melt at different Na2O/SiO2 ratios under elevated temperature stimulation. Static oxidation prevention was achieved at 920 °C when the Na2O/SiO2 ratio reached 1:3 (trisilicate) and 1:2 (disilicate), but it started to deteriorate in the case of 1:1 (metasilicate). At a high concentration of sodium (metasilicate), a severe corrosion reaction between the melt and oxide took place that resulted in a composite coating on the steel substrate. This high-temperature reaction accelerated the formation of ionic charges from the steel base and promoted oxidation. However, friction and wear reduction is proportional to an increase in the sodium oxide fraction. Metasilicate (1:1) exhibited excellent lubricity under the hot frictional test at 920 °C compared to other lubricants. It was due to the formation of the sodium-saturated surfaces and an amorphous silica layer, which was associated with the high-temperature reactivity of sodium toward the oxide surface. In addition, the NaFeO2-Fe2O3 composite film, as the reaction product of individual sodium charge and oxide, plays a significant role in maintaining the tribofilm stability for metasilicate, which was not present for disilicate. This study advances the understanding of how sodium-containing compounds perform oxidation prevention and generate lubricity at hot rubbed surfaces.

2.
Sci Rep ; 7(1): 9935, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855572

RESUMEN

Understanding how an adaptive integrated interface between lubricant additives and solid contacts works will enable improving the wear and friction of moving engine components. This work represents the comprehensive characterization of compositional and structural orientation at the sliding interface from the perspective of surface/interface tribochemistry. The integrated interface of a lubricant additive-solid resulting from the friction testing of Graphite-like carbon (GLC) and PVD-CrN coated rings sliding against cast iron under boundary lubrication was studied. The results indicate that in the case of the CrN/cast iron pair the antiwear and friction behavior were very strongly dependent upon lubricant. In contrast, the tribology of the GLC surface showed a much lower dependence on lubrication. In order to identify the compounds and their distribution across the interface, x-ray microanalysis phase mapping was innovatively applied and the principle of hard and soft acids and bases (HSAB) to understand the behaviour. Phase mapping clearly showed the hierarchical interface of the zinc-iron polyphosphate tribofilm for various sliding pairs and different sliding durations. This interface structure formed between lubricant additives and the sliding surfaces adapts to the sliding conditions - the term adaptive interface. The current results help explain the tribology of these sliding components in engine.

3.
Sci Rep ; 6: 36810, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892460

RESUMEN

An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 µs-1, high temperature rise rate of 600 Kµs-1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

4.
J Nanosci Nanotechnol ; 9(12): 7307-13, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19908778

RESUMEN

Experiments and molecular dynamics (MD) simulations have been conducted to investigate the nanoindentation behaviours of iron with body centered cubic (BCC) structure. The experiments show that the indentation hardness decreases with the indentation depth and it changes sharply for a small depth. Two cases with different crystallographic orientations have been simulated. The indentation plane is (010) for Case I and (111) for Case II, respectively. The calculated harness (17.4 GPa for Case I and 22.6 GPa for Case II) are in reasonable agreement with the experimental value (24.2 GPa). The simulation results show that the crystallographic orientation significantly influences the indentation deformation. Case I and Case II exhibit different deformation patterns. The indentation force and the hardness in Case I are smaller than Case II. It is also found that the pileup around the indenter is mainly formed along [110] direction for both cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA