Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302992

RESUMEN

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Neoplásicas/patología , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN
2.
Hepatol Commun ; 8(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285876

RESUMEN

BACKGROUND AND AIMS: Lung metastases are the most threatening signs for patients with aggressive hepatoblastoma (HBL). Despite intensive studies, the cellular origin and molecular mechanisms of lung metastases in patients with aggressive HBL are not known. The aims of these studies were to identify metastasis-initiating cells in primary liver tumors and to determine if these cells are secreted in the blood, reach the lung, and form lung metastases. APPROACH: We have examined mechanisms of activation of key oncogenes in primary liver tumors and lung metastases and the role of these mechanisms in the appearance of metastasis-initiating cells in patients with aggressive HBL by RNA-Seq, immunostaining, chromatin immunoprecipitation, Real-Time Quantitative Reverse Transcription PCR and western blot approaches. Using a protocol that mimics the exit of metastasis-initiating cells from tumors, we generated 16 cell lines from liver tumors and 2 lines from lung metastases of patients with HBL. RESULTS: We found that primary HBL liver tumors have a dramatic elevation of neuron-like cells and cancer-associated fibroblasts and that these cells are released into the bloodstream of patients with HBL and found in lung metastases. In the primary liver tumors, the ph-S675-ß-catenin pathway activates the expression of markers of cancer-associated fibroblasts; while the ZBTB3-SRCAP pathway activates the expression of markers of neurons via cancer-enhancing genomic regions/aggressive liver cancer domains leading to a dramatic increase of cancer-associated fibroblasts and neuron-like cells. Studies of generated metastasis-initiating cells showed that these cells proliferate rapidly, engage in intense cell-cell interactions, and form tumor clusters. The inhibition of ß-catenin in HBL/lung metastases-released cells suppresses the formation of tumor clusters. CONCLUSIONS: The inhibition of the ß-catenin-cancer-enhancing genomic regions/aggressive liver cancer domains axis could be considered as a therapeutic approach to treat/prevent lung metastases in patients with HBL.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patología , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/genética
3.
Cell Mol Gastroenterol Hepatol ; 17(3): 347-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37967813

RESUMEN

BACKGROUND & AIMS: The obesity-associated nonalcoholic fatty liver disease represents a common cause of pediatric liver diseases, including the pediatric liver cancer hepatoblastoma. The mechanisms behind the development of fatty liver in children are not yet known. We examined the role of the C/EBPα-p300 pathway in the development of maternal obesity-associated fatty liver phenotype in offspring. METHODS: Because the ability of C/EBPα to promote fatty liver phenotype is enhanced by CDK4-mediated phosphorylation of C/EBPα at Ser193 and subsequent formation of C/EBPα-p300 complexes, we used wild-type (WT) and C/EBPα-S193D and C/EBPα-S193A mutant mice to study the effects of maternal high-fat diet (HFD) on the liver health of offspring. The females of these mouse lines were fed an HFD before mating, and the pups were further subjected to either an HFD or a normal diet for 12 weeks. RESULTS: WT female mice on the HFD before and during pregnancy and their subsequent offspring on the HFD had severe fatty liver, fibrosis, and an increased rate of liver proliferation. However, the HFD in C/EBPα-S193A mice did not cause development of these disorders. In HFD-HFD treated WT mice, C/EBPα is phosphorylated at Ser193 and forms complexes with p300, which activate expression of genes involved in development of fatty liver, fibrosis, and proliferation. However, S193A-C/EBPα mice do not have complexes of C/EBPα-S193A with p300, leading to a lack of activation of genes of fatty liver, fibrosis, and proliferation. The mutant C/EBPα-S193D mice have accelerated cdk4-dependent pathway and have developed steatosis at early stages. CONCLUSIONS: These studies identified the epigenetic cause of obese pregnancy-associated liver diseases and suggest a potential therapy based on inhibition of cdk4-ph-S193-C/EBPα-p300 pathway.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Enfermedad del Hígado Graso no Alcohólico , Femenino , Humanos , Ratones , Animales , Embarazo , Niño , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Obesidad/genética , Fibrosis
4.
Pediatr Blood Cancer ; 71(2): e30774, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37990130

RESUMEN

BACKGROUND: Enhancer of zeste homolog 2 (EZH2) catalyzes the trimethylation of histone H3 at lysine 27 via the polycomb recessive complex 2 (PRC2) and plays a time-specific role in normal fetal liver development. EZH2 is overexpressed in hepatoblastoma (HB), an embryonal tumor. EZH2 can also promote tumorigenesis via a noncanonical, PRC2-independent mechanism via proto-oncogenic, direct protein interaction, including ß-catenin. We hypothesize that the pathological activation of EZH2 contributes to HB propagation in a PRC2-independent manner. METHODS AND RESULTS: We demonstrate that EZH2 promotes proliferation in HB tumor-derived cell lines through interaction with ß-catenin. Although aberrant EZH2 expression occurs, we determine that both canonical and noncanonical EZH2 signaling occurs based on specific gene-expression patterns and interaction with SUZ12, a PRC2 component, and ß-catenin. Silencing and inhibition of EZH2 reduce primary HB cell proliferation. CONCLUSIONS: EZH2 overexpression promotes HB cell proliferation, with both canonical and noncanonical function detected. However, because EZH2 directly interacts with ß-catenin in human tumors and EZH2 overexpression is not equal to SUZ12, it seems that a noncanonical mechanism is contributing to HB pathogenesis. Further mechanistic studies are necessary to elucidate potential pathogenic downstream mechanisms and translational potential of EZH2 inhibitors for the treatment of HB.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Embarazo , Femenino , Proteína Potenciadora del Homólogo Zeste 2/genética , beta Catenina/genética , beta Catenina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Hepatoblastoma/genética , Proliferación Celular , Línea Celular Tumoral , Neoplasias Hepáticas/patología
5.
Commun Biol ; 6(1): 249, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882565

RESUMEN

Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Niño , Humanos , Proliferación Celular , Enfermedad Crónica , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Recurrencia , Ribonucleósido Difosfato Reductasa/genética
6.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747774

RESUMEN

Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 ( RRM2 ) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B . Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.

7.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36551548

RESUMEN

BACKGROUND AND AIMS: Hepatoblastoma (HBL), a deadly malignancy in children, is the most common type of pediatric liver cancer. We recently demonstrated that ß-catenin, phosphorylated at S675 (ph-S675-ß-catenin), causes pathological alterations in fibrolamellar hepatocellular carcinoma (FLC), by activating oncogenes and fibrotic genes via human genomic regions, known as cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs). The aim of this study was to determine the role of the ph-S675-ß-catenin-TCF4-CEGRs/ALCDs pathway in HBL. METHODS: The ph-S675-ß-catenin-TCF4-CEGRs/ALCDs pathway was examined in a large cohort of HBL specimens, in HBL cell lines HepG2 and Huh6, and in patient-derived xenografts (PDXs). RESULTS: ß-catenin is phosphorylated at S675 in a large portion of tested HBL patients. In these patients, ph-S675-ß-catenin forms complexes with TCF4 and opens CEGRs/ALCDs-dependent oncogenes for transcription, leading to a massive overexpression of the oncogenes. The inhibition of the ß-catenin-TCF4-CEGRs/ALCDs axis inhibits the proliferation of cancer cells and tumor growth in HBL cell lines and HBL-PDXs. The ph-S675-ß-catenin is abundant in mitotic cells. We found that markers of HBL Glypican 3 (GPC3) and Alpha Fetoprotein (AFP) are increased in HBL patients by ß-catenin-TCF4-p300 complexes. CONCLUSIONS: The phosphorylation-mediated activation of the ß-catenin-TCF4-p300-CEGRs/ALCDs pathway increases oncogene expression in patients with aggressive liver cancer and promotes the development of hepatoblastoma.

8.
Hepatol Commun ; 6(10): 2950-2963, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36000549

RESUMEN

Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the ß-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates ß-catenin at Ser675, resulting in an increase of ß-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-ß-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of ß-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of ß-catenin-based therapy for patients with FLC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Cromatina , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano , Genómica , Proteínas del Choque Térmico HSP40/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción/genética , beta Catenina/genética
9.
Cancers (Basel) ; 14(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35804840

RESUMEN

Background: Gankyrin, a member of the 26S proteasome, is an overexpressed oncoprotein in hepatoblastoma (HBL) and hepatocellular carcinoma (HCC). Cjoc42 was the first small molecule inhibitor of Gankyrin developed; however, the IC50 values of >50 µM made them unattractive for clinical use. Second-generation inhibitors demonstrate a stronger affinity toward Gankyrin and increased cytotoxicity. The aim of this study was to characterize the in vitro effects of three cjoc42 derivatives. Methods: Experiments were performed on the HepG2 (HBL) and Hep3B (pediatric HCC) cell lines. We evaluated the expression of TSPs, cell cycle markers, and stem cell markers by Western blotting and/or real-time quantitative reverse transcription PCR. We also performed apoptotic, synergy, and methylation assays. Results: The treatment with cjoc42 derivatives led to an increase in TSPs and a dose-dependent decrease in the stem cell phenotype in both cell lines. An increase in apoptosis was only seen with AFM-1 and -2 in Hep3B cells. Drug synergy was seen with doxorubicin, and antagonism was seen with cisplatin. In the presence of cjoc42 derivatives, the 20S subunit of the 26S proteasome was more available to transport doxorubicin to the nucleus, leading to synergy. Conclusion: Small-molecule inhibitors for Gankyrin are a promising therapeutic strategy, especially in combination with doxorubicin.

10.
Arch Stem Cell Ther ; 2(1): 1-4, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447970

RESUMEN

Liver masses account for 5 to 6% of pediatric cancer, which includes hepatoblastoma (HBL) along with rare cases of hepatocellular carcinoma (HCC). The most dangerous form of pediatric liver cancer is aggressive HBL, which can be characterized by chemo-resistance and multiple nodules or metastases at diagnosis, all correlating with worse clinical prognosis. Despite intensive studies and a significant improvement in overall outcomes, very little is known about the key molecular pathways which determine the aggressiveness of pediatric liver cancer. Although genetic mutations have been reported in aggressive HBL, they represent a low level (1.9% per case) and are found mainly in two genes CTNNB1 and NRF2. Over the past 5 years, our liver biology and tumor group at Cincinnati Children's Hospital Medical Center has investigated molecular signatures of aggressive HBL by examination of fresh tissue specimens, which were studied immediately after surgery to preserve the integrity of key biochemical pathways. Summarization of these high quality HBL samples discovered several critical pathways that are specific for aggressive pediatric liver cancer. These pathways include three characteristics: Conversion of tumor suppressor proteins (TSPs) by posttranslational modifications into oncogenesActivation of specific chromosomal regions, i.e., Aggressive Liver Cancer Domains (ALCDs) within many oncogenes, resulting in increased expression of oncogenesPotential epigenetic mechanisms that open chromatin structure of oncogenes via ALCDs. This commentary summarizes our key findings and discusses development of potential ALCD-based therapeutic approaches.

11.
Cell Mol Gastroenterol Hepatol ; 12(5): 1669-1682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34245919

RESUMEN

BACKGROUND & AIMS: Epigenetic regulation of gene expression plays a critical role in the development of liver cancer; however, the molecular mechanisms of epigenetic-driven liver cancers are not well understood. The aims of this study were to examine molecular mechanisms that cause the dedifferentiation of hepatocytes into cancer cells in aggressive hepatoblastoma and test if the inhibition of these mechanisms inhibits tumor growth. METHODS: We have analyzed CCAAT/Enhancer Binding Protein alpha (C/EBPα), Transcription factor Sp5, and histone deacetylase (HDAC)1 pathways from a large biobank of fresh hepatoblastoma (HBL) samples using high-pressure liquid chromatography-based examination of protein-protein complexes and have examined chromatin remodeling on the promoters of markers of hepatocytes and p21. The HDAC1 activity was inhibited in patient-derived xenograft models of HBL and in cultured hepatoblastoma cells and expression of HDAC1-dependent markers of hepatocytes was examined. RESULTS: Analyses of a biobank showed that a significant portion of HBL patients have increased levels of an oncogenic de-phosphorylated-S190-C/EBPα, Sp5, and HDAC1 compared with amounts of these proteins in adjacent regions. We found that the oncogenic de-phosphorylated-S190-C/EBPα is created in aggressive HBL by protein phosphatase 2A, which is increased within the nucleus and dephosphorylates C/EBPα at Ser190. C/EBPα-HDAC1 and Sp5-HDAC1 complexes are abundant in hepatocytes, which dedifferentiate into cancer cells. Studies in HBL cells have shown that C/EBPα-HDAC1 and Sp5-HDAC1 complexes reduce markers of hepatocytes and p21 via repression of their promoters. Pharmacologic inhibition of C/EBPα-HDAC1 and Sp5-HDAC1 complexes by Suberoylanilide hydroxamic acid (SAHA) and small interfering RNA-mediated inhibition of HDAC1 increase expression of hepatocyte markers, p21, and inhibit proliferation of cancer cells. CONCLUSIONS: HDAC1-mediated repression of markers of hepatocytes is an essential step for the development of HBL, providing background for generation of therapies for aggressive HBL by targeting HDAC1 activities.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Hepatocitos/metabolismo , Histona Desacetilasa 1/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Hepatocitos/patología , Histona Desacetilasa 1/genética , Humanos , Neoplasias Hepáticas/patología , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Quinasas p21 Activadas/genética
12.
Hepatology ; 74(4): 2201-2215, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34037269

RESUMEN

BACKGROUND AND AIMS: Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL. RESULTS: We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells. CONCLUSIONS: In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Hepatoblastoma , Neoplasias Hepáticas , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Células Cultivadas , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Front Pharmacol ; 12: 580722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746747

RESUMEN

Objective: Relapsed hepatoblastoma (HBL) and upfront hepatocellular carcinoma (HCC) are notoriously chemoresistant tumors associated with poor outcomes. Gankyrin (Gank) is a known oncogene that is overexpressed in pediatric liver cancer and implicated in chemo-resistance. The goal of this study was to evaluate if the Gank-tumor suppressor axis is activated in chemoresistant hepatoblastoma patients and examine if an inhibitor of Gank, Cjoc42, might improve the chemosensitivity of cancer cells. Methods: Expression of Gank and its downstream targets were examined in fresh human HBL samples using immunostaining, QRT-PCR, and Western Blot. Cancer cells, Huh6 (human HBL) and Hepa1c1c7 (mouse HCC) were treated with Cjoc42 and with Cjoc42 in combination with cisplatin or doxorubicin. Cell proliferation, apoptosis, and chemoresistance were examined. To examine activities of Cjoc42 in vivo, mice were treated with different doses of Cjoc42, and biological activities of Gank and cytotoxicity of Cjoc42 were tested. Results: Elevation of Gank and Gank-mediated elimination of TSPs are observed in patients with minimal necrosis after chemotherapy and relapsed disease. The treatment of Huh6 and Hepa1c1c7 with Cjoc42 was not cytotoxic; however, in combination with cisplatin or doxorubicin, Cjoc42 caused a significant increase in cytotoxicity compared to chemotherapy alone with increased apoptosis. Examination of Cjoc42 in WT mice showed that Cjoc42 is well tolerated without systemic toxicity, and levels of tumor suppressors CUGBP1, Rb, p53, C/EBPα, and HNF4α are increased by blocking their Gank-dependent degradation. Conclusions: Our work shows that Cjoc42 might be a promising adjunct to chemotherapy for the treatment of severe pediatric liver cancer and presents mechanisms by which Cjoc42 increases chemo-sensitivity.

15.
Tumour Biol ; 42(12): 1010428320977124, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33256542

RESUMEN

Hepatoblastomas exhibit the lowest mutational burden among pediatric tumors. We previously showed that epigenetic disruption is crucial for hepatoblastoma carcinogenesis. Our data revealed hypermethylation of nicotinamide N-methyltransferase, a highly expressed gene in adipocytes and hepatocytes. The expression pattern and the role of nicotinamide N-methyltransferase in pediatric liver tumors have not yet been explored, and this study aimed to evaluate the effect of nicotinamide N-methyltransferase hypermethylation in hepatoblastomas. We evaluated 45 hepatoblastomas and 26 non-tumoral liver samples. We examined in hepatoblastomas if the observed nicotinamide N-methyltransferase promoter hypermethylation could lead to dysregulation of expression by measuring mRNA and protein levels by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot assays. The potential impact of nicotinamide N-methyltransferase changes was evaluated on the metabolic profile by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Significant nicotinamide N-methyltransferase downregulation was revealed in hepatoblastomas, with two orders of magnitude lower nicotinamide N-methyltransferase expression in tumor samples and hepatoblastoma cell lines than in hepatocellular carcinoma cell lines. A specific TSS1500 CpG site (cg02094283) of nicotinamide N-methyltransferase was hypermethylated in tumors, with an inverse correlation between its methylation level and nicotinamide N-methyltransferase expression. A marked global reduction of the nicotinamide N-methyltransferase protein was validated in tumors, with strong correlation between gene and protein expression. Of note, higher nicotinamide N-methyltransferase expression was statistically associated with late hepatoblastoma diagnosis, a known clinical variable of worse prognosis. In addition, untargeted metabolomics analysis detected aberrant lipid metabolism in hepatoblastomas. Data presented here showed the first evidence that nicotinamide N-methyltransferase reduction occurs in hepatoblastomas, providing further support that the nicotinamide N-methyltransferase downregulation is a wide phenomenon in liver cancer. Furthermore, this study unraveled the role of DNA methylation in the regulation of nicotinamide N-methyltransferase expression in hepatoblastomas, in addition to evaluate the potential effect of nicotinamide N-methyltransferase reduction in the metabolism of these tumors. These preliminary findings also suggested that nicotinamide N-methyltransferase level may be a potential prognostic biomarker for hepatoblastoma.


Asunto(s)
Metilación de ADN , Regulación hacia Abajo , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Nicotinamida N-Metiltransferasa/genética , Regiones Promotoras Genéticas/genética , Adolescente , Línea Celular Tumoral , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Hepatoblastoma/metabolismo , Hepatoblastoma/patología , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Metabolómica/métodos , Nicotinamida N-Metiltransferasa/metabolismo
16.
Hepatol Commun ; 3(8): 1036-1049, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31388625

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) involves development of hepatic steatosis, fibrosis, and steatohepatitis. Because hepatic steatosis appears first in NAFLD animal models, the current therapy development focuses on inhibition of hepatic steatosis, suggesting that further steps of NAFLD will be also inhibited. In this report, we show that the first event of NAFLD is liver proliferation, which drives fibrosis in NAFLD. We have deleted a strong driver of liver proliferation, gankyrin (Gank), and examined development of NAFLD in this animal model under conditions of a high-fat diet (HFD). We found that proliferating livers of wild-type mice develop fibrosis; however, livers of Gank liver-specific knockout (GLKO) mice with reduced proliferation show no fibrosis. Interestingly, an HFD causes the development of strong macrovesicular steatosis in GLKO mice and is surprisingly associated with improvements in animal health. We observed that key regulators of liver biology CCAAT/enhancer binding protein α (C/EBPα), hepatocyte nuclear factor 4α (HNF4α), p53, and CUG repeat binding protein 1 (CUGBP1) are elevated due to the deletion of Gank and that these proteins support liver functions leading to healthy conditions in GLKO mice under an HFD. To examine the role of one of these proteins in the protection of liver from fibrosis, we used CUGBP1-S302A knockin mice, which have a reduction of CUGBP1 due to increased degradation of this mutant by Gank. These studies show that reduction of CUGBP1 inhibits steatosis and facilitates liver proliferation, leading to fibrosis and the development of liver tumors. Conclusion: Liver proliferation drives fibrosis, while steatosis might play a protective role. Therapy for NAFLD should include inhibition of proliferation rather than inhibition of steatosis.

17.
Commun Biol ; 1: 67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271949

RESUMEN

Hepatoblastoma (HBL) is a pediatric liver cancer that affects children under the age of three. Reduction of tumor suppressor proteins (TSPs) is commonly seen in liver cancer. However, in our studies we find that aggressive, chemo-resistant HBLs exhibit an elevation of TSPs. HBL patients with a classic phenotype have reduced TSP levels, but patients with aggressive HBL express elevated TSPs that undergo posttranslational modifications, eliminating their tumor suppression activities. Here we identify unique aggressive liver cancer domains (ALCDs) that are activated in aggressive HBL by PARP1-mediated chromatin remodeling leading to elevation of modified TSPs and activation of additional cancer pathways: WNT signaling and ß-catenin. Inhibition of PARP1 blocks activation of ALCDs and normalizes expression of corresponding genes, therefore reducing cell proliferation. Our studies reveal PARP1 activation as a mechanism for the development of aggressive HBL, further suggesting FDA-approved PARP1 inhibitors might be used for treatment of patients with aggressive HBL.

18.
Cell Mol Gastroenterol Hepatol ; 6(3): 239-255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109252

RESUMEN

Background & Aims: Uncontrolled liver proliferation is a key characteristic of liver cancer; however, the mechanisms by which this occurs are not well understood. Elucidation of these mechanisms is necessary for the development of better therapy. The oncogene Gankyrin (Gank) is overexpressed in both hepatocellular carcinoma and hepatoblastoma. The aim of this work was to determine the role of Gank in liver proliferation and elucidate the mechanism by which Gank promotes liver proliferation. Methods: We generated Gank liver-specific knock-out (GLKO) mice and examined liver biology and proliferation after surgical resection and liver injury. Results: Global profiling of gene expression in GLKO mice showed significant changes in pathways involved in liver cancer and proliferation. Investigations of liver proliferation after partial hepatectomy and CCl4 treatment showed that GLKO mice have dramatically inhibited proliferation of hepatocytes at early stages after surgery and injury. In control LoxP mice, liver proliferation was characterized by Gank-mediated reduction of tumor-suppressor proteins (TSPs). The failure of GLKO hepatocytes to proliferate is associated with a lack of down-regulation of these proteins. Surprisingly, we found that hepatic progenitor cells of GLKO mice start proliferation at later stages and restore the original size of the liver at 14 days after partial hepatectomy. To examine the proliferative activities of Gank in cancer cells, we used a small molecule, cjoc42, to inhibit interactions of Gank with the 26S proteasome. These studies showed that Gank triggers degradation of TSPs and that cjoc42-mediated inhibition of Gank increases levels of TSPs and inhibits proliferation of cancer cells. Conclusions: These studies show that Gank promotes hepatocyte proliferation by elimination of TSPs. This work provides background for the development of Gank-mediated therapy for the treatment of liver cancer. RNA sequencing data can be accessed in the NCBI Gene Expression Omnibus: GSE104395.


Asunto(s)
Carcinoma Hepatocelular/patología , Hepatoblastoma/patología , Hepatocitos/patología , Neoplasias Hepáticas/patología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Bencenosulfonatos/farmacología , Tetracloruro de Carbono/farmacología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Hepatoblastoma/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción/genética , Triazoles/farmacología
20.
Aging Cell ; 17(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29024407

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. NAFLD usually begins as low-grade hepatic steatosis which further progresses in an age-dependent manner to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma in some patients. Ghrelin is a hormone known to promote adiposity in rodents and humans, but its potential role in hepatic steatosis is unknown. We hypothesized that genetic ghrelin deletion will protect against the development of age-related hepatic steatosis. To examine this hypothesis, we utilized ghrelin knockout (KO) mice. Although no different in young animals (3 months old), we found that at 20 months of age, ghrelin KO mice have significantly reduced hepatic steatosis compared to aged-matched wild-type (WT) mice. Examination of molecular pathways by which deletion of ghrelin reduces steatosis showed that the increase in expression of diacylglycerol O-acyltransferase-1 (DGAT1), one of the key enzymes of triglyceride (TG) synthesis, seen with age in WT mice, is not present in KO mice. This was due to the lack of activation of CCAAT/enhancer binding protein-alpha (C/EBPα) protein and subsequent reduction of C/EBPα-p300 complexes. These complexes were abundant in livers of old WT mice and were bound to and activated the DGAT1 promoter. However, the C/EBPα-p300 complexes were not detected on the DGAT1 promoter in livers of old KO mice resulting in lower levels of the enzyme. In conclusion, these studies demonstrate the mechanism by which ghrelin deletion prevents age-associated hepatic steatosis and suggest that targeting this pathway may offer therapeutic benefit for NAFLD.


Asunto(s)
Factores de Edad , Diacilglicerol O-Acetiltransferasa/farmacología , Hígado Graso/metabolismo , Ghrelina/deficiencia , Animales , Diacilglicerol O-Acetiltransferasa/efectos de los fármacos , Diacilglicerol O-Acetiltransferasa/genética , Regulación hacia Abajo , Hígado Graso/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA