Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712252

RESUMEN

The initial objective of this study was to shed light on the evolution of small DNA tumor viruses by analyzing de novo assemblies of publicly available deep sequencing datasets. The survey generated a searchable database of contig snapshots representing more than 100,000 Sequence Read Archive records. Using modern structure-aware search tools, we iteratively broadened the search to include an increasingly wide range of other virus families. The analysis revealed a surprisingly diverse range of chimeras involving different virus groups. In some instances, genes resembling known DNA-replication modules or known virion protein operons were paired with unrecognizable sequences that structural predictions suggest may represent previously unknown replicases and novel virion architectures. Discrete clades of an emerging group called adintoviruses were discovered in datasets representing humans and other primates. As a proof of concept, we show that the contig database is also useful for discovering RNA viruses and candidate archaeal phages. The ancillary searches revealed additional examples of chimerization between different virus groups. The observations support a gene-centric taxonomic framework that should be useful for future virus-hunting efforts.

2.
Viruses ; 13(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960771

RESUMEN

While recent changes in treatment have reduced the lethality of idiopathic chronic diarrhea (ICD), this condition remains one of the most common causes of rhesus macaque deaths in non-human primate research centers. We compared the viromes in fecal swabs from 52 animals with late stage ICD and 41 healthy animals. Viral metagenomics targeting virus-like particles was used to identify viruses fecally shed by each animal. Five viruses belonging to the Picornaviridae, one to the Caliciviridae, one to the Parvoviridae, and one to the Adenoviridae families were identified. The fraction of reads matching each viral species was then used to estimate and compare viral loads in ICD cases versus healthy controls. None of the viruses detected in fecal swabs were strongly associated with ICD.


Asunto(s)
Diarrea/etiología , Heces/virología , Virosis/complicaciones , Animales , Estudios de Casos y Controles , Enfermedad Crónica , Diarrea/virología , Macaca mulatta , Metagenómica
3.
Virus Evol ; 7(1): veaa055, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34646575

RESUMEN

Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.

4.
Genome Announc ; 4(6)2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27932663

RESUMEN

It is generally assumed that individual papillomas (warts) are caused by infection with individual papillomavirus types. Deep sequencing of virions extracted from a canine oral papilloma revealed the presence of canine papillomavirus 1 (CPV1), CPV2, and a novel canine papillomavirus, CPV19. This suggests that papillomas sometimes harbor multiple viral species.

5.
Oncotarget ; 7(32): 51553-51568, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27303921

RESUMEN

The Epithelial-Mesenchymal Transition (EMT) is a developmental program that provides cancer cells with the characteristics necessary for metastasis, including increased motility and stem cell properties. The cellular and molecular mechanisms underlying this process are not yet fully understood, hampering efforts to develop therapeutics. In recent years, it has become apparent that EMT is accompanied by wholesale changes in diverse signaling pathways that are initiated by proteins at the plasma membrane (PM). The PM contains thousands of lipid and protein species that are dynamically and spatially organized into lateral membrane domains, an example of which are lipid rafts. Since one of the major functions of rafts is modulation of signaling originating at the PM, we hypothesized that the signaling changes occurring during an EMT are associated with alterations in PM organization. To test this hypothesis, we used Giant Plasma Membrane Vesicles (GPMVs) to study the organization of intact plasma membranes isolated from live cells. We observed that induction of EMT significantly destabilized lipid raft domains. Further, this reduction in stability was crucial for the maintenance of the stem cell phenotype and EMT-induced remodeling of PM-orchestrated pathways. Exogenously increasing raft stability by feeding cells with ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) repressed these phenotypes without altering EMT markers, and inhibited the metastatic capacity of breast cancer cells. Hence, modulating raft properties regulates cell phenotype, suggesting a novel approach for targeting the impact of EMT in cancer.


Asunto(s)
Membrana Celular/patología , Movimiento Celular , Transición Epitelial-Mesenquimal/fisiología , Microdominios de Membrana/patología , Células Madre Neoplásicas/patología , Animales , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Femenino , Humanos , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/fisiología , Transducción de Señal/fisiología
6.
PLoS Pathog ; 12(4): e1005574, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27093155

RESUMEN

Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Parásitos/genética , Poliomavirus/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Peces , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Escorpiones , Ovinos
7.
Cancer Res ; 76(7): 2037-49, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26825169

RESUMEN

Despite the high mortality from metastatic cancer, therapeutic targets to prevent metastasis are limited. Efforts to identify genetic aberrations that predispose tumors to metastasis have been mostly unsuccessful. To understand the nature of candidate targets for metastatic disease, we performed an in silico screen to identify drugs that can inhibit a gene expression signature associated with epithelial-mesenchymal transition (EMT). Compounds discovered through this method, including those previously identified, appeared to restrict metastatic capacity through a common mechanism, the ability to modulate the fluidity of cell membranes. Treatment of breast cancer cell lines with the putative antimetastasis agents reduced membrane fluidity, resulting in decreased cell motility, stem cell-like properties, and EMT in vitro, and the drugs also inhibited spontaneous metastasis in vivo When fluidity was unchanged, the antimetastasis compounds could no longer restrict metastasis, indicating a causal association between fluidity and metastasis. We further demonstrate that fluidity can be regulated by cellular cholesterol flux, as the cholesterol efflux channel ABCA1 potentiated metastatic behaviors in vitro and in vivo The requirement for fluidity was further supported by the finding in breast cancer patients that ABCA1 was overexpressed in 41% of metastatic tumors, reducing time to metastasis by 9 years. Collectively, our findings reveal increased membrane fluidity as a necessary cellular feature of metastatic potential that can be controlled by many currently available drugs, offering a viable therapeutic opportunity to prevent cancer metastasis. Cancer Res; 76(7); 2037-49. ©2016 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Fluidez de la Membrana/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA