Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4682, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824130

RESUMEN

Interleukin-6 (IL-6) has been long considered a key player in cancer cachexia. It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia. However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, is a critical mediator of IL-6 function in cancer cachexia in male mice. We find that circulating IL-6 can rapidly enter the AP and activate neurons in the AP and its associated network. Peripheral tumor, known to increase circulating IL-6, leads to elevated IL-6 in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons and AP network hyperactivity. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an anti-IL-6 antibody attenuates cachexia and the hyperactivity in the AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra, the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing Gfral-expressing AP neurons also attenuates cancer cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer cachexia.


Asunto(s)
Caquexia , Interleucina-6 , Neuronas , Receptores de Interleucina-6 , Animales , Caquexia/metabolismo , Caquexia/etiología , Interleucina-6/metabolismo , Masculino , Neuronas/metabolismo , Ratones , Receptores de Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/complicaciones , Línea Celular Tumoral , Humanos
2.
Horm Behav ; 158: 105463, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995608

RESUMEN

The socially monogamous prairie vole (Microtus ochrogaster) and promiscuous meadow vole (Microtus pennsylvanicus) are closely related, but only prairie voles display long-lasting pair bonds, biparental care, and selective aggression towards unfamiliar individuals after pair bonding. These social behaviors in mammals are largely mediated by steroid hormone signaling in the social behavior network (SBN) of the brain. Hormone receptors are reproducible markers of sex differences that can provide more information than anatomy alone and can even be at odds with anatomical dimorphisms. We reasoned that behaviors associated with social monogamy in prairie voles may emerge in part from unique expression patterns of steroid hormone receptors in this species, and that these expression patterns would be more similar across males and females in prairie than in meadow voles or the laboratory mouse. To obtain insight into steroid hormone signaling in the developing prairie vole brain, we assessed expression of estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), and androgen receptor (Ar) within the SBN, using in situ hybridization at postnatal day 14 in mice, meadow, and prairie voles. We found species-specific patterns of hormone receptor expression in the hippocampus and ventromedial hypothalamus, as well as species differences in the sex bias of these markers in the principal nucleus of the bed nucleus of the stria terminalis. These findings suggest the observed differences in gonadal hormone receptor expression may underlie species differences in the display of social behaviors.


Asunto(s)
Encéfalo , Pradera , Femenino , Animales , Masculino , Ratones , Encéfalo/metabolismo , Conducta Social , Arvicolinae/metabolismo , Hormonas/metabolismo , Hormonas Gonadales/metabolismo , Esteroides/metabolismo
3.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128260

RESUMEN

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Asunto(s)
Trastorno Depresivo Mayor , Núcleos Septales , Humanos , Ratones , Femenino , Masculino , Animales , Núcleos Septales/fisiología , Trastorno Depresivo Mayor/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , ARN/metabolismo
4.
bioRxiv ; 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711916

RESUMEN

Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35817509

RESUMEN

Across vertebrate species, gonadal hormones coordinate physiology with behavior to facilitate social interactions essential for reproduction and survival. In adulthood, these hormones activate neural circuits that regulate behaviors presenting differently in females and males, such as parenting and territorial aggression. Yet long before sex-typical behaviors emerge at puberty, transient hormone production during sensitive periods of neurodevelopment establish the circuits upon which adult hormones act. How transitory waves of early-life hormone signaling exert lasting effects on the brain remains a central question. Here we discuss how perinatal estradiol signaling organizes cellular and molecular sex differences in the rodent brain. We review classic anatomic studies revealing sex differences in cell number, volume, and neuronal projections, and consider how single-cell sequencing methods enable distinction between sex-biased cell-type abundance and gene expression. Finally, we highlight the recent discovery of a gene regulatory program activated by estrogen receptor α (ERα) following the perinatal hormone surge. A subset of this program displays sustained sex-biased gene expression and chromatin accessibility throughout the postnatal sensitive period, demonstrating a bona fide epigenetic mechanism. We propose that ERα-expressing neurons throughout the social behavior network use similar gene regulatory programs to coordinate brain sexual differentiation.


Asunto(s)
Receptor alfa de Estrógeno , Diferenciación Sexual , Femenino , Masculino , Animales , Diferenciación Sexual/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Epigénesis Genética , Encéfalo/metabolismo , Caracteres Sexuales , Hormonas/metabolismo
6.
Nature ; 599(7883): 131-135, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34646010

RESUMEN

Oestrogen depletion in rodents and humans leads to inactivity, fat accumulation and diabetes1,2, underscoring the conserved metabolic benefits of oestrogen that inevitably decrease with age. In rodents, the preovulatory surge in 17ß-oestradiol (E2) temporarily increases energy expenditure to coordinate increased physical activity with peak sexual receptivity. Here we report that a subset of oestrogen-sensitive neurons in the ventrolateral ventromedial hypothalamic nucleus (VMHvl)3-7 projects to arousal centres in the hippocampus and hindbrain, and enables oestrogen to rebalance energy allocation in female mice. Surges in E2 increase melanocortin-4 receptor (MC4R) signalling in these VMHvl neurons by directly recruiting oestrogen receptor-α (ERα) to the Mc4r gene. Sedentary behaviour and obesity in oestrogen-depleted female mice were reversed after chemogenetic stimulation of VMHvl neurons expressing both MC4R and ERα. Similarly, a long-term increase in physical activity is observed after CRISPR-mediated activation of this node. These data extend the effect of MC4R signalling - the most common cause of monogenic human obesity8 - beyond the regulation of food intake and rationalize reported sex differences in melanocortin signalling, including greater disease severity of MC4R insufficiency in women9. This hormone-dependent node illuminates the power of oestrogen during the reproductive cycle in motivating behaviour and maintaining an active lifestyle in women.


Asunto(s)
Encéfalo/fisiología , Estrógenos/metabolismo , Esfuerzo Físico/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal , Animales , Sistemas CRISPR-Cas , Metabolismo Energético , Receptor alfa de Estrógeno/metabolismo , Estrógenos/deficiencia , Femenino , Edición Génica , Hipocampo/metabolismo , Masculino , Melanocortinas/metabolismo , Ratones , Neuronas/metabolismo , Obesidad/metabolismo , Rombencéfalo/metabolismo , Conducta Sedentaria , Caracteres Sexuales , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología
7.
Genome Res ; 30(1): 49-61, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727682

RESUMEN

We show the use of 5'-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.


Asunto(s)
Acrilamida , Ácidos Nucleicos , Análisis de la Célula Individual/métodos , Acrilamida/química , ADN , Contaminación de ADN , Variaciones en el Número de Copia de ADN , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Biblioteca de Genes , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Ácidos Nucleicos/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Polimerizacion , ARN , Análisis de la Célula Individual/normas
8.
Genes (Basel) ; 10(6)2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181654

RESUMEN

Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.


Asunto(s)
Encéfalo/metabolismo , Linaje de la Célula/genética , Epigenoma/genética , Caracteres Sexuales , Animales , Encéfalo/crecimiento & desarrollo , Femenino , Expresión Génica/genética , Humanos , Masculino , Neuronas/metabolismo
9.
J Neurosci ; 38(24): 5567-5583, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29844022

RESUMEN

Both the amygdala and the bed nucleus of the stria terminalis (BNST) have been implicated in maladaptive anxiety characteristics of anxiety disorders. However, the underlying circuit and cellular mechanisms have remained elusive. Here we show that mice with Erbb4 gene deficiency in somatostatin-expressing (SOM+) neurons exhibit heightened anxiety as measured in the elevated plus maze test and the open field test, two assays commonly used to assess anxiety-related behaviors in rodents. Using a combination of electrophysiological, molecular, genetic, and pharmacological techniques, we demonstrate that the abnormal anxiety in the mutant mice is caused by enhanced excitatory synaptic inputs onto SOM+ neurons in the central amygdala (CeA), and the resulting reduction in inhibition onto downstream SOM+ neurons in the BNST. Notably, our results indicate that an increase in dynorphin signaling in SOM+ CeA neurons mediates the paradoxical reduction in inhibition onto SOM+ BNST neurons, and that the consequent enhanced activity of SOM+ BNST neurons is both necessary for and sufficient to drive the elevated anxiety. Finally, we show that the elevated anxiety and the associated synaptic dysfunctions and increased dynorphin signaling in the CeA-BNST circuit of the Erbb4 mutant mice can be recapitulated by stress in wild-type mice. Together, our results unravel previously unknown circuit and cellular processes in the central extended amygdala that can cause maladaptive anxiety.SIGNIFICANCE STATEMENT The central extended amygdala has been implicated in anxiety-related behaviors, but the underlying mechanisms are unclear. Here we found that somatostatin-expressing neurons in the central amygdala (CeA) controls anxiety through modulation of the stria terminalis, a process that is mediated by an increase in dynorphin signaling in the CeA. Our results reveal circuit and cellular dysfunctions that may account for maladaptive anxiety.


Asunto(s)
Ansiedad/fisiopatología , Núcleo Amigdalino Central/fisiopatología , Vías Nerviosas/fisiología , Núcleos Septales/fisiopatología , Animales , Núcleo Amigdalino Central/metabolismo , Dinorfinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Receptor ErbB-4/deficiencia , Núcleos Septales/metabolismo , Somatostatina/metabolismo
10.
Horm Behav ; 95: 3-12, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28734725

RESUMEN

Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.


Asunto(s)
Receptor alfa de Estrógeno/fisiología , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Conducta Sexual Animal/fisiología , Virilismo/genética , Agresión/fisiología , Animales , Encéfalo/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Territorialidad , Virilismo/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(47): 13408-13413, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27810956

RESUMEN

As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin ß1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin ß1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin ß1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin ß1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non-cell-autonomous effects on angiogenesis. We conclude that epithelial integrin ß1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development.


Asunto(s)
Desarrollo Embrionario , Células Epiteliales/metabolismo , Integrina beta1/metabolismo , Neovascularización Fisiológica , Hipófisis/citología , Hipófisis/embriología , Animales , Animales Recién Nacidos , Recuento de Células , Diferenciación Celular , Desarrollo Embrionario/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Integrasas/metabolismo , Ratones , Neovascularización Fisiológica/genética , Factores de Transcripción Paired Box/metabolismo , Pericitos/citología , Pericitos/metabolismo , Fenotipo , Hipófisis/metabolismo , Análisis de Secuencia de ARN , Factores de Tiempo , Factor C de Crecimiento Endotelial Vascular/metabolismo
12.
Neuron ; 66(2): 260-72, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20435002

RESUMEN

Testosterone and estrogen are essential for male behaviors in vertebrates. How these two signaling pathways interact to control masculinization of the brain and behavior remains to be established. Circulating testosterone activates the androgen receptor (AR) and also serves as the source of estrogen in the brain. We have used a genetic strategy to delete AR specifically in the mouse nervous system. This approach permits us to determine the function of AR in sexually dimorphic behaviors in males while maintaining circulating testosterone levels within the normal range. We find that AR mutant males exhibit masculine sexual and territorial displays, but they have striking deficits in specific components of these behaviors. Taken together with the surprisingly limited expression of AR in the developing brain, our findings indicate that testosterone acts as a precursor to estrogen to masculinize the brain and behavior, and signals via AR to control the levels of male behavioral displays.


Asunto(s)
Encéfalo/metabolismo , Receptores Androgénicos/metabolismo , Conducta Sexual Animal/fisiología , Territorialidad , Animales , Estrógenos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Receptores Androgénicos/genética , Testosterona/metabolismo
13.
Cell ; 139(1): 61-72, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804754

RESUMEN

Sex hormones are essential for neural circuit development and sex-specific behaviors. Male behaviors require both testosterone and estrogen, but it is unclear how the two hormonal pathways intersect. Circulating testosterone activates the androgen receptor (AR) and is also converted into estrogen in the brain via aromatase. We demonstrate extensive sexual dimorphism in the number and projections of aromatase-expressing neurons. The masculinization of these cells is independent of AR but can be induced in females by either testosterone or estrogen, indicating a role for aromatase in sexual differentiation of these neurons. We provide evidence suggesting that aromatase is also important in activating male-specific aggression and urine marking because these behaviors can be elicited by testosterone in males mutant for AR and in females subjected to neonatal estrogen exposure. Our results suggest that aromatization of testosterone into estrogen is important for the development and activation of neural circuits that control male territorial behaviors.


Asunto(s)
Encéfalo/metabolismo , Estrógenos/metabolismo , Vías Nerviosas , Caracteres Sexuales , Animales , Animales Recién Nacidos , Aromatasa/metabolismo , Supervivencia Celular , Estrógenos/biosíntesis , Femenino , Masculino , Ratones , Neuronas/metabolismo , Receptores Androgénicos/metabolismo , Conducta Sexual Animal , Territorialidad
14.
Curr Opin Genet Dev ; 15(3): 332-40, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15917210

RESUMEN

The pituitary gland functions as a relay between the hypothalamus and peripheral target organs that regulate basic physiological functions, including growth, the stress response, reproduction, metabolism and lactation. The development of the pituitary gland has been studied extensively in mice, and has begun to be explored in zebrafish, an animal model system amenable to forward genetics. Multiple signaling molecules and transcription factors, expressed in overlapping but distinct spatial and temporal patterns, are required at various stages of pituitary development. Defects in this precisely regulated genetic program lead to diverse pituitary dysfunction. The animal models have greatly enhanced our understanding of molecular mechanisms underlying pituitary development in addition to congenital pituitary disorders in humans.


Asunto(s)
Hipopituitarismo/genética , Hipófisis/embriología , Hipófisis/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipopituitarismo/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA