Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36145311

RESUMEN

Indoleamine 2, 3-dioxygenase 1 (IDO1) is commonly expressed by cancers as a mechanism for evading the immune system. Preclinical and clinical studies have indicated the potential of combining IDO1 inhibitors with immune therapies for the treatment of cancer, strengthening an interest in the discovery of novel dioxygenase inhibitors for reversing tumour-mediated immune suppression. To facilitate the discovery, development and investigation of novel small molecule inhibitors of IDO1 and its hepatic isozyme tryptophan dioxygenase (TDO2), murine tumour cells were engineered to selectively express either murine or human IDO1 and TDO2 for use as tools to dissect both the species specificity and isoenzyme selectivity of newly discovered inhibitors. Lewis lung carcinoma (LLTC) lines were engineered to express either murine or human IDO1 for use to test species selectivity of the novel inhibitors; in addition, GL261 glioma lines were engineered to express either human IDO1 or human TDO2 and used to test the isoenzyme selectivity of individual inhibitors in cell-based assays. The 20 most potent inhibitors against recombinant human IDO1 enzyme, discovered from a commissioned screening of 40,000 compounds in the Australian WEHI compound library, returned comparable IC50 values against murine or human IDO1 in cell-based assays using the LLTC-mIDO1 and LLTC-hIDO1 line, respectively. To test the in vivo activity of the hits, transfected lines were inoculated into syngeneic C57Bl/6 mice. Individual LLTC-hIDO1 tumours showed variable expression of human IDO1 in contrast to GL261-hIDO1 tumours which were homogenous in their IDO1 expression and were subsequently used for in vivo studies. W-0019482, the most potent IDO1 inhibitor identified from cell-based assays, reduced plasma and intratumoural ratios of kynurenine to tryptophan (K:T) and delayed the growth of subcutaneous GL261-hIDO1 tumours in mice. Synthetic modification of W-0019482 generated analogues with dual IDO1/TDO2 inhibitory activity, as well as inhibitors that were selective for either TDO2 or IDO1. These results demonstrate the versatility of W-0019482 as a lead in generating all three subclasses of tryptophan dioxygenase inhibitors which can be applied for investigating the individual roles and interactions between IDO1 and TDO2 in driving cancer-mediated immune suppression.

2.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164144

RESUMEN

The CDK4/6 inhibitor palbociclib, combined with endocrine therapy, has been shown to be effective in postmenopausal women with estrogen receptor-positive, HER2-negative advanced or metastatic breast cancer. However, palbociclib is not as effective in the highly aggressive, triple-negative breast cancer that lacks sensitivity to chemotherapy or endocrine therapy. We hypothesized that conjugation of the near-infrared dye MHI-148 with palbociclib can produce a potential theranostic in triple-negative, as well as estrogen receptor-positive, breast cancer cells. In our study, the conjugate was found to have enhanced activity in all mammalian cell lines tested in vitro. However, the conjugate was cytotoxic and did not induce G1 cell cycle arrest in breast cancer cells, suggesting its mechanism of action differs from the parent compound palbociclib. The study highlights the importance of investigating the mechanism of conjugates of near-infrared dyes to therapeutic compounds, as conjugation can potentially result in a change of mechanism or target, with an enhanced cytotoxic effect in this case.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama/tratamiento farmacológico , Carbocianinas , Citotoxinas , Indoles , Piperazinas , Piridinas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Células CHO , Carbocianinas/química , Carbocianinas/farmacología , Cricetulus , Citotoxinas/química , Citotoxinas/farmacología , Femenino , Células HEK293 , Humanos , Indoles/química , Indoles/farmacología , Piperazinas/química , Piperazinas/farmacología , Piridinas/química , Piridinas/farmacología
3.
Oncol Ther ; 9(2): 541-556, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34159519

RESUMEN

Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors.

4.
Bioorg Med Chem ; 39: 116160, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901770

RESUMEN

The expression of tryptophan catabolising enzyme indoleamine 2,3-dioxygenase 1 (IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2) in cancers is associated with suppressed immunity and poor patient prognosis. Results from human clinical trials of IDO1 inhibitors have been disappointing. There is now a strong interest in the development of TDO2-selective or dual IDO1/TDO2 inhibitors that may surpass IDO1 inhibitors by providing broader efficacy and blocking constitutively-expressed hepatic TDO2. To expedite the discovery of novel TDO2-specific and dual inhibitors, an assay that enabled the efficient and accurate measurement of the inhibitory activity of compounds against both IDO1 and TDO2 enzymes, concurrently in the same experiment was established to screen 5,682 compounds that included the National Cancer Institute Diversity set 5, for inhibition of IDO1 and TDO2 activity. This screen identified 82 compounds that inhibited either IDO1, TDO2 or both enzymes > 50% at 20 µM. Thirty Pan Assay Interference compounds were removed from the list and the IC50 of the remaining 52 compounds against IDO1 and TDO2 was subsequently determined using the newly-developed concurrent assay. Ten compounds were confirmed as dual IDO1/TDO2 inhibitors having IC50 values under 50 µM against both enzymes and within 2-fold of each other. Six compounds with IC50 values between 1.39 and 8.41 µM were identified as potential TDO2-selective leads. The use of this concurrent protocol is anticipated to expedite the discovery of novel leads for dual and selective inhibitors against IDO1 and or TDO2 and speed the evaluation of novel analogues that will ensue.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Humanos , Reproducibilidad de los Resultados , Relación Estructura-Actividad
5.
Front Immunol ; 12: 636081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708223

RESUMEN

Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias/enzimología , Triptófano Oxigenasa/metabolismo , Triptófano/metabolismo , Escape del Tumor , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/inmunología , Quinurenina/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Triptófano/inmunología , Triptófano Oxigenasa/antagonistas & inhibidores , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral
6.
F1000Res ; 9: 1362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33447385

RESUMEN

Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs BIRC5 (Survivin) and YBX1, as well as long-noncoding RNAs HOTAIR, ZFAS1, and AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that BIRC5 and HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , ARN Largo no Codificante , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Bovinos , Humanos , ARN Largo no Codificante/genética
7.
Molecules ; 24(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795096

RESUMEN

Cancers express tryptophan catabolising enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) to produce immunosuppressive tryptophan metabolites that undermine patients' immune systems, leading to poor disease outcomes. Both enzymes are validated targets for cancer immunotherapy but there is a paucity of potent TDO2 and dual IDO1/TDO2 inhibitors. To identify novel dual IDO1/TDO2 scaffolds, 3D shape similarity and pharmacophore in silico screening was conducted using TDO2 as a model for both systems. The obtained hits were tested in cancer cell lines expressing mainly IDO1 (SKOV3-ovarian), predominantly TDO2 (A172-brain), and both IDO1 and TDO2 (BT549-breast). Three virtual screening hits were confirmed as inhibitors (TD12, TD18 and TD34). Dose response experiments showed that TD34 is the most potent inhibitor capable of blocking both IDO1 and TDO2 activity, with the IC50 value for BT549 at 3.42 µM. This work identified new scaffolds able to inhibit both IDO1 and TDO2, thus enriching the collection of dual IDO1/TDO2 inhibitors and providing chemical matter for potential development into future anticancer drugs.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Triptófano Oxigenasa/antagonistas & inhibidores , Triptófano Oxigenasa/química , Antineoplásicos/química , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Descubrimiento de Drogas/métodos , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
8.
Cell Commun Signal ; 16(1): 88, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466445

RESUMEN

BACKGROUND: Depletion of tryptophan and the accumulation of tryptophan metabolites mediated by the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1), trigger immune cells to undergo apoptosis. However, cancer cells in the same microenvironment appear not to be affected. Mechanisms whereby cancer cells resist accelerated tryptophan degradation are not completely understood. We hypothesize that cancer cells co-opt IMPACT (the product of IMPrinted and AnCienT gene), to withstand periods of tryptophan deficiency. METHODS: A range of bioinformatic techniques including correlation and gene set variation analyses was applied to genomic datasets of cancer (The Cancer Genome Atlas) and normal (Genotype Tissue Expression Project) tissues to investigate IMPACT's role in cancer. Survival of IMPACT-overexpressing GL261 glioma cells and their wild type counterparts cultured in low tryptophan media was assessed using fluorescence microscopy and MTT bio-reduction assay. Expression of the Integrated Stress Response proteins was measured using Western blotting. RESULTS: We found IMPACT to be upregulated and frequently amplified in a broad range of clinical cancers relative to their non-malignant tissue counterparts. In a subset of clinical cancers, high IMPACT expression associated with decreased activity of pathways and genes involved in stress response and with increased activity of translational regulation such as the mTOR pathway. Experimental studies using the GL261 glioma line showed that cells engineered to overexpress IMPACT, gained a survival advantage over wild-type lines when cultured under limiting tryptophan concentrations. No significant difference in the expression of proteins in the Integrated Stress Response pathway was detected in tryptophan-deprived GL261 IMPACT-overexpressors compared to that in wild-type cells. IMPACT-overexpressing GL261 cells but not their wild-type counterparts, showed marked enlargement of their nuclei and cytoplasmic area when stressed by tryptophan deprivation. CONCLUSIONS: The bioinformatics data together with our laboratory studies, support the hypothesis that IMPACT mediates a protective mechanism allowing cancer cells to overcome microenvironmental stresses such as tryptophan deficiency.


Asunto(s)
Triptófano/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Biología Computacional , Metilación de ADN , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Estrés Fisiológico/genética
9.
Eur J Med Chem ; 126: 983-996, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28011425

RESUMEN

High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 µM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC50 between 3 and 12 µM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Dominio Catalítico/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Simulación del Acoplamiento Molecular , Mutación , Relación Estructura-Actividad
10.
Biochim Biophys Acta ; 1850(9): 1772-80, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25907332

RESUMEN

BACKGROUND: Tryptophan catabolism along the kynurenine pathway is associated with a number of pathologies including cataract formation and cancer. Whilst the chemical reactions of kynurenine are well studied, less is known about the reactivity of its precursor N-formylkynurenine (NFK). We previously reported the generation of a strong fluorophore in an aqueous reaction of NFK with piperidine, and herein we describe its structure and mechanism of formation. METHODS: Compounds were identified using NMR, mass and UV spectroscopic techniques. The products from the reaction of amines with amino acids were quantified using HPLC-MS. RESULTS: The novel fluorophore was identified as a tetrahydroquinolone adduct (PIP-THQ), where piperidine is N-formylated and attached at its 2-position to the quinolone. NFK is initially deaminated to generate an unsaturated enone, which forms an adduct with piperidine and is subsequently converted into the fluorophore. Testing of a variety of other secondary amines showed that only cyclic amines unsubstituted at both positions adjacent to nitrogen could form fluorophores efficiently. The amino acids tryptophan and kynurenine, which lack the formamide group do not form such fluorophores. CONCLUSIONS: NFK forms fluorophores in a not previously published reaction with cyclic amines. GENERAL SIGNIFICANCE: Our study is the first to provide evidence for concurrent transamidation and substitution at the 2-position of a cyclic amine occurring under moderately-heated aqueous conditions with no added catalysts. The high reactivity of NFK demonstrated here could result in formation of biologically relevant metabolites yet to be characterised.


Asunto(s)
Aminas/metabolismo , Colorantes Fluorescentes/metabolismo , Quinurenina/análogos & derivados , Triptófano/metabolismo , Quinurenina/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas
11.
Chem Res Toxicol ; 28(2): 216-24, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25621379

RESUMEN

There is mounting evidence that cyanobacterial lipopeptides can kill mammalian cells, presenting a hazard to human health. Unfortunately, their mechanism of toxicity is poorly understood. We have isolated new cyclic undecalipopeptides muscotoxin A and B containing unique lipophilicresidue 3-amino-2,5-dihydroxydecanoic acid (5-OH Ahdoa). Muscotoxin B was not used for biological studies due to its poor yield. Muscotoxin A was cytotoxic to YAC-1, Sp/2, and HeLa cancer cell lines (LC(50) ranged from 9.9 to 13.2 µM after 24 h of exposure), causing membrane damage and influx of calcium ions. Subsequently, we studied this lytic mechanism using synthetic liposomes with encapsulated fluorescent probes. Muscotoxin A permeabilized liposomes composed exclusively of phospholipids, demonstrating that no proteins or carbohydrates present in biomembranes are essential for its activity. Paradoxically, the permeabilization activity of muscotoxin A was mediated by a significant reduction in membrane surface fluidity (stiffening), the opposite of that caused by synthetic detergents and cytolytic lipopeptide puwainaphycin F. At 25 °C, muscotoxin A disrupted liposomes with and without cholesterol/sphingomyelin; however, at 37 °C, it was selective against liposomes with cholesterol/sphingomyelin. It appears that both membrane fluidity and organization can affect the lytic activity of muscotoxin A. Our findings strengthen the evidence that cyanobacterial lipopeptides specifically disrupt mammalian cell membranes and bring new insights into the mechanism of this effect.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Cianobacterias/química , Lipopéptidos/toxicidad , Fluidez de la Membrana/efectos de los fármacos , Péptidos Cíclicos/toxicidad , Fosfolípidos/química , Animales , Muerte Celular/efectos de los fármacos , Membrana Celular/química , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Lipopéptidos/química , Lipopéptidos/aislamiento & purificación , Ratones , Conformación Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Células Tumorales Cultivadas
12.
Bioorg Med Chem ; 21(24): 7595-603, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24262887

RESUMEN

Screening of a fragment library identified 2-hydrazinobenzothiazole as a potent inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme expressed by tumours that suppresses the immune system. Spectroscopic studies indicated that 2-hydrazinobenzothiazole interacted with the IDO1 haem and in silico docking predicted that the interaction was through hydrazine. Subsequent studies of hydrazine derivatives identified phenylhydrazine (IC50=0.25 ± 0.07 µM) to be 32-fold more potent than 2-hydrazinobenzothiazole (IC50=8.0 ± 2.3 µM) in inhibiting rhIDO1 and that it inhibited cellular IDO1 at concentrations that were noncytotoxic to cells. Here, phenylhydrazine is shown to inhibit IDO1 through binding to haem.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Hidrazinas/farmacología , Sistema Inmunológico/enzimología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Hidrazinas/química , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
13.
Anal Bioanal Chem ; 405(8): 2515-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23314482

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan-catabolizing enzyme whose expression by a broad range of clinical tumors is associated with immunosuppression and poor patient outcome. Here we describe a new fluorescence assay for measuring IDO1 activity suitable for high-throughput screening of compound libraries for novel IDO1 inhibitors. This assay is easy to perform, requiring the addition of only one reagent prior to readout. In place of measuring kynurenine, it uses the in situ formation of an N-formylkynurenine-derived fluorophore (NFKPIP) measured at an excitation wavelength of 400 nm and an emission wavelength of 500 nm. The fluorescence intensity of the NFKPIP formed is directly related to the amount of enzyme activity, and the signal is stable over 8 h. This assay has a lower limit of detection, equating to 153 nM N-formylkynurenine, which is over 30-fold lower than the limits of detection of existing assays for IDO1 activity. When we compared the performance of the new assay with that of the published colorimetric absorbance assay in screening the National Cancer Institute Diversity Set III of 1,597 compounds for IDO1 inhibitors, we obtained an identical list of the 25 most active compounds in the two assays. Although 93 compounds (aldehydes, ketones, and aromatic amines) in the library interfered with the absorbance readout, only 18 compounds (conjugated systems and fused cycles) interfered with the readout of the new fluorescence assay. IC(50) values determined using the new assay for three known IDO1 inhibitors-1,4-naphthoquinone, 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide and 4-phenyl-1H-imidazole-were consistent with their literature values, further validating the new assay for measuring IDO1 activity.


Asunto(s)
Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Quinurenina/análogos & derivados , Mediciones Luminiscentes/métodos , Evaluación Preclínica de Medicamentos , Pruebas de Enzimas/instrumentación , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/química , Mediciones Luminiscentes/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA