Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Death Dis ; 13(7): 584, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798698

RESUMEN

Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Transporte Axonal , Factor Neurotrófico Derivado de la Línea Celular Glial , Proteínas Proto-Oncogénicas c-ret , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Transporte Axonal/fisiología , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
2.
Front Mol Neurosci ; 13: 129, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765219

RESUMEN

Virus-mediated gene therapy has the potential to deliver exogenous genetic material into specific cell types to promote survival and counteract disease. This is particularly enticing for neuronal conditions, as the nervous system is renowned for its intransigence to therapeutic targeting. Administration of gene therapy viruses into skeletal muscle, where distal terminals of motor and sensory neurons reside, has been shown to result in extensive transduction of cells within the spinal cord, brainstem, and sensory ganglia. This route is minimally invasive and therefore clinically relevant for gene therapy targeting to peripheral nerve soma. For successful transgene expression, viruses administered into muscle must undergo a series of processes, including host cell interaction and internalization, intracellular sorting, long-range retrograde axonal transport, endosomal liberation, and nuclear import. In this review article, we outline key characteristics of major gene therapy viruses-adenovirus, adeno-associated virus (AAV), and lentivirus-and summarize the mechanisms regulating important steps in the virus journey from binding at peripheral nerve terminals to nuclear delivery. Additionally, we describe how neuropathology can negatively influence these pathways, and conclude by discussing opportunities to optimize the intramuscular administration route to maximize gene delivery and thus therapeutic potential.

3.
Cell Rep ; 30(11): 3655-3662.e2, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187538

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease resulting from a complex interplay between genetics and environment. Impairments in axonal transport have been identified in several ALS models, but in vivo evidence remains limited, thus their pathogenetic importance remains to be fully resolved. We therefore analyzed the in vivo dynamics of retrogradely transported, neurotrophin-containing signaling endosomes in nerve axons of two ALS mouse models with mutations in the RNA processing genes TARDBP and FUS. TDP-43M337V mice, which show neuromuscular pathology without motor neuron loss, display axonal transport perturbations manifesting between 1.5 and 3 months and preceding symptom onset. Contrastingly, despite 20% motor neuron loss, transport remained largely unaffected in FusΔ14/+ mice. Deficiencies in retrograde axonal transport of signaling endosomes are therefore not shared by all ALS-linked genes, indicating that there are mechanistic distinctions in the pathogenesis of ALS caused by mutations in different RNA processing genes.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Transporte Axonal , Proteínas de Unión al ADN/genética , Endosomas/metabolismo , Mutación/genética , Proteína FUS de Unión a ARN/genética , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Células Receptoras Sensoriales/metabolismo
4.
Front Mol Neurosci ; 10: 405, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29270111

RESUMEN

Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA