Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798454

RESUMEN

Minimal improvement in outcomes for high-risk pediatric acute myeloid leukemia (pAML) patients has been made in the past decades. Nowhere is this more evident than in patients carrying a t(16;21)(p11;q22) FUS::ERG translocation; quick time to relapse and universal failure of hematopoietic stem cell transplant contribute to one of the lowest survival rates in childhood leukemia. Here, we have identified a unique, defining immune-evasion phenotype in FUS::ERG pAML driven by EZH2 and characterized by loss of MHC class I and II molecules and immune co-stimulatory receptors. This loss of immune engagement, present at diagnosis, allows pervasiveness of blasts that prove resistant to standard treatment. We demonstrate that treatment with the FDA-approved EZH2 inhibitor tazemetostat, in combination with IFN-γ, reverses the phenotype, re-expresses MHC receptor expression, and reduces blast viability. EZH2 inhibitors provide a novel therapeutic option for this high-risk population and may prove a beneficial supplemental treatment for FUS::ERG pAML. STATEMENT OF SIGNIFICANCE: FUS::ERG pAML patients have dismal outcomes. Here we show a ubiquitous immune-evasive phenotype, defined by elevated EZH2 levels and loss of MHC class I and II receptors, is present in these patients at diagnosis. Treatment with the EZH2 inhibitor Tazemetostat successfully reverses the phenotype in a patient-derived cell line model.

2.
Sci Signal ; 17(832): eadf4299, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626007

RESUMEN

Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.


Asunto(s)
Pez Cebra , beta Catenina , Animales , Humanos , beta Catenina/metabolismo , Endocitosis , Receptores ErbB/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
3.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745326

RESUMEN

DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.

4.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745420

RESUMEN

Rare diseases and conditions create unique challenges for genetic epidemiologists precisely because cases and samples are scarce. In recent years, whole-genome and whole-transcriptome sequencing (WGS/WTS) have eased the study of rare genetic variants. Paired WGS and WTS data are ideal, but logistical and financial constraints often preclude generating paired WGS and WTS data. Thus, many databases contain a patchwork of specimens with either WGS or WTS data, but only a minority of samples have both. The NCI Genomic Data Commons facilitates controlled access to genomic and transcriptomic data for thousands of subjects, many with unpaired sequencing results. Local reanalysis of expressed variants across whole transcriptomes requires significant data storage, compute, and expertise. We developed the bamSliceR package to facilitate swift transition from aligned sequence reads to expressed variant characterization. bamSliceR leverages the NCI Genomic Data Commons API to query genomic sub-regions of aligned sequence reads from specimens identified through the robust Bioconductor ecosystem. We demonstrate how population-scale targeted genomic analysis can be completed using orders of magnitude fewer resources in this fashion, with minimal compute burden. We demonstrate pilot results from bamSliceR for the TARGET pediatric AML and BEAT-AML projects, where identification of rare but recurrent somatic variants directly yields biologically testable hypotheses. bamSliceR and its documentation are freely available on GitHub at https://github.com/trichelab/bamSliceR.

6.
J Clin Oncol ; 41(16): 2949-2962, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795987

RESUMEN

PURPOSE: Optimized strategies for risk classification are essential to tailor therapy for patients with biologically distinctive disease. Risk classification in pediatric acute myeloid leukemia (pAML) relies on detection of translocations and gene mutations. Long noncoding RNA (lncRNA) transcripts have been shown to associate with and mediate malignant phenotypes in acute myeloid leukemia (AML) but have not been comprehensively evaluated in pAML. METHODS: To identify lncRNA transcripts associated with outcomes, we evaluated the annotated lncRNA landscape by transcript sequencing of 1,298 pediatric and 96 adult AML specimens. Upregulated lncRNAs identified in the pAML training set were used to establish a regularized Cox regression model of event-free survival (EFS), yielding a 37 lncRNA signature (lncScore). Discretized lncScores were correlated with initial and postinduction treatment outcomes using Cox proportional hazards models in validation sets. Predictive model performance was compared with standard stratification methods by concordance analysis. RESULTS: Training set cases with positive lncScores had 5-year EFS and overall survival rates of 26.7% and 42.7%, respectively, compared with 56.9% and 76.3% with negative lncScores (hazard ratio, 2.48 and 3.16; P < .001). Pediatric validation cohorts and an adult AML group yielded comparable results in magnitude and significance. lncScore remained independently prognostic in multivariable models, including key factors used in preinduction and postinduction risk stratification. Subgroup analysis suggested that lncScores provide additional outcome information in heterogeneous subgroups currently classified as indeterminate risk. Concordance analysis showed that lncScore adds to overall classification accuracy with at least comparable predictive performance to current stratification methods that rely on multiple assays. CONCLUSION: Inclusion of the lncScore enhances predictive power of traditional cytogenetic and mutation-defined stratification in pAML with potential, as a single assay, to replace these complex stratification schemes with comparable predictive accuracy.


Asunto(s)
Leucemia Mieloide Aguda , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Leucemia Mieloide Aguda/terapia , Pronóstico , Resultado del Tratamiento , Mutación
7.
Haematologica ; 108(8): 2044-2058, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36815378

RESUMEN

NUP98 fusions comprise a family of rare recurrent alterations in AML, associated with adverse outcomes. In order to define the underlying biology and clinical implications of this family of fusions, we performed comprehensive transcriptome, epigenome, and immunophenotypic profiling of 2,235 children and young adults with AML and identified 160 NUP98 rearrangements (7.2%), including 108 NUP98-NSD1 (4.8%), 32 NUP98-KDM5A (1.4%) and 20 NUP98-X cases (0.9%) with 13 different fusion partners. Fusion partners defined disease characteristics and biology; patients with NUP98-NSD1 or NUP98-KDM5A had distinct immunophenotypic, transcriptomic, and epigenomic profiles. Unlike the two most prevalent NUP98 fusions, NUP98-X variants are typically not cryptic. Furthermore, NUP98-X cases are associated with WT1 mutations, and have epigenomic profiles that resemble either NUP98-NSD1 or NUP98-KDM5A. Cooperating FLT3-ITD and WT1 mutations define NUP98-NSD1, and chromosome 13 aberrations are highly enriched in NUP98-KDM5A. Importantly, we demonstrate that NUP98 fusions portend dismal overall survival, with the noteworthy exception of patients bearing abnormal chromosome 13 (clinicaltrials gov. Identifiers: NCT00002798, NCT00070174, NCT00372593, NCT01371981).


Asunto(s)
Leucemia Mieloide Aguda , Niño , Adulto Joven , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Proteínas de Complejo Poro Nuclear/genética , Perfilación de la Expresión Génica , Proteína 2 de Unión a Retinoblastoma/genética
8.
Genes (Basel) ; 14(1)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672963

RESUMEN

The SOX transcription factor family is pivotal in controlling aspects of development. To identify genotype-phenotype relationships of SOX proteins, we performed a non-biased study of SOX using 1890 open-reading frame and 6667 amino acid sequences in combination with structural dynamics to interpret 3999 gnomAD, 485 ClinVar, 1174 Geno2MP, and 4313 COSMIC human variants. We identified, within the HMG (High Mobility Group)- box, twenty-seven amino acids with changes in multiple SOX proteins annotated to clinical pathologies. These sites were screened through Geno2MP medical phenotypes, revealing novel SOX15 R104G associated with musculature abnormality and SOX8 R159G with intellectual disability. Within gnomAD, SOX18 E137K (rs201931544), found within the HMG box of ~0.8% of Latinx individuals, is associated with seizures and neurological complications, potentially through blood-brain barrier alterations. A total of 56 highly conserved variants were found at sites outside the HMG-box, including several within the SOX2 HMG-box-flanking region with neurological associations, several in the SOX9 dimerization region associated with Campomelic Dysplasia, SOX14 K88R (rs199932938) flanking the HMG box associated with cardiovascular complications within European populations, and SOX7 A379V (rs143587868) within an SOXF conserved far C-terminal domain heterozygous in 0.716% of African individuals with associated eye phenotypes. This SOX data compilation builds a robust genotype-to-phenotype association for a gene family through more robust ortholog data integration.


Asunto(s)
Proteínas del Grupo de Alta Movilidad , Factores de Transcripción SOX , Humanos , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Transcripción SOX/genética , Secuencia de Aminoácidos , Dimerización , Genotipo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción SOXB2/genética , Factores de Transcripción SOXB2/metabolismo , Factores de Transcripción SOXE/genética
9.
Front Oncol ; 12: 952325, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212481

RESUMEN

Background and Aims: The molecular basis of hepatocellular neoplasm, not otherwise specified (HCN-NOS) is unknown. We aimed to identify gene expression patterns, potential methylation-regulated genes and pathways that characterize the tumor, and its possible relationship to hepatoblastoma and hepatocellular carcinoma (HCC). Approach & Results: Parallel genome-wide profiling of gene expression (RNAseq) and DNA methylation (EPIC850) was performed on 4 pairs of pre-treatment HCN-NOS tumors and adjacent non-tumor controls. 2530 significantly differentially expressed genes (DEGs) were identified between tumors and controls. Many of these DEGs were associated with hepatoblastoma and/or HCC. Analysis Match in Ingenuity Pathway Analysis determined that the gene expression profile of HCN-NOS was unique but significantly similar to that of both hepatoblastoma and HCC. A total of 27,195 CpG sites (CpGs) were significantly differentially methylated (DM) between tumors and controls, with a global hypomethylation pattern and predominant CpG island hypermethylation in promotor regions. Aberrant DNA methylation predominated in Developmental Process and Molecular Function Regulator pathways. Embryonic stem cell pathways were significantly enriched. In total, 1055 aberrantly methylated (at CpGs) and differentially expressed genes were identified, including 25 upstream regulators and sixty-one potential CpG island methylation-regulated genes. Eight methylation-regulated genes (TCF3, MYBL2, SRC, HMGA2, PPARGC1A, SLC22A1, COL2A1 and MYCN) had highly consistent gene expression patterns and prognostic value in patients with HCC, based on comparison to publicly available datasets. Conclusions: HCN-NOS has a unique, stem-cell like gene expression and DNA methylation profile related to both hepatoblastoma and HCC but distinct therefrom. Further, 8 methylation-regulated genes associated with prognosis in HCC were identified.

10.
Mitochondrion ; 67: 6-14, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115539

RESUMEN

Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.


Asunto(s)
ADN Mitocondrial , Sarcoma de Ewing , Humanos , Niño , ADN Mitocondrial/genética , Haplotipos , Sarcoma de Ewing/genética , Población Negra , Mitocondrias/genética
11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887382

RESUMEN

Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Biomarcadores , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Niño , ADN , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Insulina/metabolismo , Osteosarcoma/diagnóstico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Pronóstico , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Factores de Crecimiento/metabolismo
12.
Elife ; 112022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35285802

RESUMEN

The Ewing sarcoma family of tumors is a group of malignant small round blue cell tumors (SRBCTs) that affect children, adolescents, and young adults. The tumors are characterized by reciprocal chromosomal translocations that generate chimeric fusion oncogenes, the most common of which is EWSR1-FLI1. Survival is extremely poor for patients with metastatic or relapsed disease, and no molecularly targeted therapy for this disease currently exists. The absence of a reliable genetic animal model of Ewing sarcoma has impaired investigation of tumor cell/microenvironmental interactions in vivo. We have developed a new genetic model of Ewing sarcoma based on Cre-inducible expression of human EWSR1-FLI1 in wild-type zebrafish, which causes rapid onset of SRBCTs at high penetrance. The tumors express canonical EWSR1-FLI1 target genes and stain for known Ewing sarcoma markers including CD99. Growth of tumors is associated with activation of the MAPK/ERK pathway, which we link to dysregulated extracellular matrix metabolism in general and heparan sulfate proteoglycan catabolism in particular. Targeting heparan sulfate proteoglycans with the specific heparan sulfate antagonist Surfen reduces ERK1/2 signaling and decreases tumorigenicity of Ewing sarcoma cells in vitro and in vivo. These results highlight the important role of the extracellular matrix in Ewing sarcoma tumor growth and the potential of agents targeting proteoglycan metabolism as novel therapies for this disease.


Asunto(s)
Sarcoma de Ewing , Adolescente , Animales , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Pez Cebra/metabolismo
13.
J Neurosurg ; 136(1): 88-96, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271545

RESUMEN

OBJECTIVE: Brain metastasis is the most common intracranial neoplasm. Although anatomical spatial distributions of brain metastasis may vary according to primary cancer subtype, these patterns are not understood and may have major implications for treatment. METHODS: To test the hypothesis that the spatial distribution of brain metastasis varies according to cancer origin in nonrandom patterns, the authors leveraged spatial 3D coordinate data derived from stereotactic Gamma Knife radiosurgery procedures performed to treat 2106 brain metastases arising from 5 common cancer types (melanoma, lung, breast, renal, and colorectal). Two predictive topographic models (regional brain metastasis echelon model [RBMEM] and brain region susceptibility model [BRSM]) were developed and independently validated. RESULTS: RBMEM assessed the hierarchical distribution of brain metastasis to specific brain regions relative to other primary cancers and showed that distinct regions were relatively susceptible to metastasis, as follows: bilateral temporal/parietal and left frontal lobes were susceptible to lung cancer; right frontal and occipital lobes to melanoma; cerebellum to breast cancer; and brainstem to renal cell carcinoma. BRSM provided probability estimates for each cancer subtype, independent of other subtypes, to metastasize to brain regions, as follows: lung cancer had a propensity to metastasize to bilateral temporal lobes; breast cancer to right cerebellar hemisphere; melanoma to left temporal lobe; renal cell carcinoma to brainstem; and colon cancer to right cerebellar hemisphere. Patient topographic data further revealed that brain metastasis demonstrated distinct spatial patterns when stratified by patient age and tumor volume. CONCLUSIONS: These data support the hypothesis that there is a nonuniform spatial distribution of brain metastasis to preferential brain regions that varies according to cancer subtype in patients treated with Gamma Knife radiosurgery. These topographic patterns may be indicative of the abilities of various cancers to adapt to regional neural microenvironments, facilitate colonization, and establish metastasis. Although the brain microenvironment likely modulates selective seeding of metastasis, it remains unknown how the anatomical spatial distribution of brain metastasis varies according to primary cancer subtype and contributes to diagnosis. For the first time, the authors have presented two predictive models to show that brain metastasis, depending on its origin, in fact demonstrates distinct geographic spread within the central nervous system. These findings could be used as a predictive diagnostic tool and could also potentially result in future translational and therapeutic work to disrupt growth of brain metastasis on the basis of anatomical region.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias del Sistema Nervioso Central/patología , Neoplasias/patología , Adulto , Factores de Edad , Anciano , Algoritmos , Mapeo Encefálico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Metástasis de la Neoplasia , Neoplasias/diagnóstico por imagen , Procedimientos Neuroquirúrgicos , Valor Predictivo de las Pruebas , Radiocirugia , Estudios Retrospectivos
14.
PLoS One ; 16(11): e0259197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793513

RESUMEN

Infant Acute Myeloid Leukemia (AML) is a poorly-addressed, heterogeneous malignancy distinguished by surprisingly few mutations per patient but accompanied by myriad age-specific translocations. These characteristics make treatment of infant AML challenging. While infant AML is a relatively rare disease, it has enormous impact on families, and in terms of life-years-lost and life limiting morbidities. To better understand the mechanisms that drive infant AML, we performed integrative analyses of genome-wide mRNA, miRNA, and DNA-methylation data in diagnosis-stage patient samples. Here, we report the activation of an onco-fetal B-cell developmental gene regulatory network in infant AML. AML in infants is genomically distinct from AML in older children/adults in that it has more structural genomic aberrations and fewer mutations. Differential expression analysis of ~1500 pediatric AML samples revealed a large number of infant-specific genes, many of which are associated with B cell development and function. 18 of these genes form a well-studied B-cell gene regulatory network that includes the epigenetic regulators BRD4 and POU2AF1, and their onco-fetal targets LIN28B and IGF2BP3. All four genes are hypo-methylated in infant AML. Moreover, micro-RNA Let7a-2 is expressed in a mutually exclusive manner with its target and regulator LIN28B. These findings suggest infant AML may respond to bromodomain inhibitors and immune therapies targeting CD19, CD20, CD22, and CD79A.


Asunto(s)
Linfocitos B/metabolismo , Redes Reguladoras de Genes/genética , Leucemia Mieloide Aguda/diagnóstico , Linfocitos B/citología , Linfocitos B/inmunología , Proteínas de Ciclo Celular/genética , Metilación de ADN , Humanos , Lactante , Leucemia Mieloide Aguda/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transactivadores/genética , Factores de Transcripción/genética , Regulación hacia Arriba
15.
EMBO Mol Med ; 13(2): e12640, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33332735

RESUMEN

Rhabdoid tumor (RT) is a pediatric cancer characterized by the inactivation of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. Although this deletion is the known oncogenic driver, there are limited effective therapeutic options for these patients. Here we use unbiased screening of cell line panels to identify a heightened sensitivity of rhabdoid tumor to mithramycin and the second-generation analogue EC8042. The sensitivity of MMA and EC8042 was superior to traditional DNA damaging agents and linked to the causative mutation of the tumor, SMARCB1 deletion. Mithramycin blocks SMARCB1-deficient SWI/SNF activity and displaces the complex from chromatin to cause an increase in H3K27me3. This triggers chromatin remodeling and enrichment of H3K27ac at chromHMM-defined promoters to restore cellular differentiation. These effects occurred at concentrations not associated with DNA damage and were not due to global chromatin remodeling or widespread gene expression changes. Importantly, a single 3-day infusion of EC8042 caused dramatic regressions of RT xenografts, recapitulated the increase in H3K27me3, and cellular differentiation described in vitro to completely cure three out of eight mice.


Asunto(s)
Tumor Rabdoide , Animales , Diferenciación Celular , Proteínas Cromosómicas no Histona , Humanos , Ratones , Plicamicina/farmacología , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Factores de Transcripción/genética
16.
Cancer Res ; 80(11): 2083-2084, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487587

RESUMEN

Over the past two decades, progress in tumor immunology and targeted therapy has reshaped oncology, and in many cases, reshaped the course of once-intractable diseases. Yet the cost of its clinical manifestation has created a disease of its own: "financial toxicity," the burden of drugs such as imatinib, where a year's supply can easily cost as much as a house. Equally rapid progress in mathematical oncology over this time period has often come in the form of fundamental, rather than applied, advances. However, in new work by Hähnel and colleagues, we can see the outlines of a viable treatment for financial toxicity: precise, dynamic, clinically validated, and immune-aware models, able to accurately identify patients who remain disease-free in the months and years after discontinuing effective, but pricey, targeted therapies.See related article by Hähnel et al., p. 2394.


Asunto(s)
Neoplasias , Humanos , Mesilato de Imatinib , Oncología Médica
17.
Clin Cancer Res ; 26(3): 726-737, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31719049

RESUMEN

PURPOSE: A cryptic inv(16)(p13.3q24.3) encoding the CBFA2T3-GLIS2 fusion is associated with poor outcome in infants with acute megakaryocytic leukemia. We aimed to broaden our understanding of the pathogenesis of this fusion through transcriptome profiling. EXPERIMENTAL DESIGN: Available RNA from children and young adults with de novo acute myeloid leukemia (AML; N = 1,049) underwent transcriptome sequencing (mRNA and miRNA). Transcriptome profiles for those with the CBFA2T3-GLIS2 fusion (N = 24) and without (N = 1,025) were contrasted to define fusion-specific miRNAs, genes, and pathways. Clinical annotations defined distinct fusion-associated disease characteristics and outcomes. RESULTS: The CBFA2T3-GLIS2 fusion was restricted to infants <3 years old (P < 0.001), and the presence of this fusion was highly associated with adverse outcome (P < 0.001) across all morphologic classifications. Further, there was a striking paucity of recurrent cooperating mutations, and transduction of cord blood stem cells with this fusion was sufficient for malignant transformation. CBFA2T3-GLIS2 positive cases displayed marked upregulation of genes with cell membrane/extracellular matrix localization potential, including NCAM1 and GABRE. Additionally, miRNA profiling revealed significant overexpression of mature miR-224 and miR-452, which are intronic miRNAs transcribed from the GABRE locus. Gene-set enrichment identified dysregulated Hippo, TGFß, and hedgehog signaling, as well as NCAM1 (CD56) interaction pathways. Therapeutic targeting of fusion-positive leukemic cells with CD56-directed antibody-drug conjugate caused significant cytotoxicity in leukemic blasts. CONCLUSIONS: The CBFA2T3-GLIS2 fusion defines a highly refractory entity limited to infants that appears to be sufficient for malignant transformation. Transcriptome profiling elucidated several highly targetable genes and pathways, including the identification of CD56, providing a highly plausible target for therapeutic intervention.


Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda/genética , MicroARNs/genética , Mutación , Proteínas de Fusión Oncogénica/genética , Adulto , Antígeno CD56/genética , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero , Receptores de GABA-A/genética , Adulto Joven
18.
J Pathol ; 249(3): 319-331, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31236944

RESUMEN

Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Osteosarcoma/genética , Osteosarcoma/secundario , Secuenciación Completa del Genoma , Factores de Edad , Colombia Británica , Variaciones en el Número de Copia de ADN , Femenino , Amplificación de Genes , Dosificación de Gen , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Inestabilidad de Microsatélites , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Transcriptoma , Estados Unidos , Secuenciación del Exoma
19.
Cancer Res ; 79(7): 1318-1330, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709931

RESUMEN

Little is known about the spectrum of mitochondrial DNA (mtDNA) mutations across pediatric malignancies. In this study, we analyzed matched tumor and normal whole genome sequencing data from 616 pediatric patients with hematopoietic malignancies, solid tumors, and brain tumors. We identified 391 mtDNA mutations in 284 tumors including 45 loss-of-function mutations, which clustered at four statistically significant hotspots in MT-COX3, MT-ND4, and MT-ND5, and at a mutation hotspot in MT-tRNA-MET. A skewed ratio (4.83) of nonsynonymous versus synonymous (dN/dS) mtDNA mutations with high statistical significance was identified on the basis of Monte Carlo simulations in the tumors. In comparison, opposite ratios of 0.44 and 0.93 were observed in 616 matched normal tissues and in 249 blood samples from children without cancer, respectively. mtDNA mutations varied by cancer type and mtDNA haplogroup. Collectively, these results suggest that deleterious mtDNA mutations play a role in the development and progression of pediatric cancers. SIGNIFICANCE: This pan-cancer mtDNA study establishes the landscape of germline and tumor mtDNA mutations and identifies hotspots of tumor mtDNA mutations to pinpoint key mitochondrial functions in pediatric malignancies.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Neoplasias/genética , Estudios de Casos y Controles , Niño , Femenino , Genoma Mitocondrial , Humanos , Masculino
20.
Oncoimmunology ; 7(12): e1475873, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524885

RESUMEN

Osteosarcomas are aggressive bone tumors for which therapeutic advances have not improved over several decades. Unlike most pediatric tumors, the osteosarcoma genome is remarkably unstable, characterized by numerous copy number alterations and chromosomal structural aberrations. In this study, we asked if the targetable immune checkpoints CD274 (PD-L1), PDCD1LG2 (PD-L2), CD276 (B7-H3) and IDO1 are impacted by copy number alterations in osteosarcoma. Of the 215 osteosarcoma samples investigated, PD-L1/PD-L2, B7-H3 and IDO1 were independently gained at frequencies of approximately 8-9%, with a cumulative frequency of approximately 24%. RNA sequencing data from two independent cohorts revealed that B7-H3 is the most highly expressed immune checkpoint gene among the four investigated. We also show that IDO1 is preferentially expressed in pediatric solid tumors and that increased protein expression of B7-H3 and IDO1 are significantly associated with inferior survival in patient samples. Using human osteosarcoma cell lines, we demonstrate that IDO1 is gained in MG63 and G292 cells and that the IDO1 inhibitor, epacadostat, inhibits the enzymatic activity of IDO1 in a dose-dependent manner in these cells. Together, these data reveal the genomic and transcriptomic profiles of PD-L1, PD-L2, B7-H3 and IDO1 in osteosarcoma and identifies a potential context for targeted immunotherapeutic intervention in a subset of patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA