Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Hemasphere ; 8(2): e45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435427

RESUMEN

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

2.
Nat Commun ; 15(1): 1302, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383522

RESUMEN

The interactions between tumor and immune cells along the course of breast cancer progression remain largely unknown. Here, we extensively characterize multiple sequential and parallel multiregion tumor and blood specimens of an index patient and a cohort of metastatic triple-negative breast cancers. We demonstrate that a continuous increase in tumor genomic heterogeneity and distinct molecular clocks correlated with resistance to treatment, eventually allowing tumors to escape from immune control. TCR repertoire loses diversity over time, leading to convergent evolution as breast cancer progresses. Although mixed populations of effector memory and cytotoxic single T cells coexist in the peripheral blood, defects in the antigen presentation machinery coupled with subdued T cell recruitment into metastases are observed, indicating a potent immune avoidance microenvironment not compatible with an effective antitumor response in lethal metastatic disease. Our results demonstrate that the immune responses against cancer are not static, but rather follow dynamic processes that match cancer genomic progression, illustrating the complex nature of tumor and immune cell interactions.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Genómica/métodos , Microambiente Tumoral
3.
EMBO Mol Med ; 16(1): 64-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177531

RESUMEN

Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.


Asunto(s)
Aneuploidia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Animales , Ratones , Inestabilidad Cromosómica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Progresión de la Enfermedad
4.
Breast Cancer Res ; 25(1): 143, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964360

RESUMEN

BACKGROUND: As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFß, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFß target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS: We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS: In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFß-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix  that does not sustain TGFß-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS: Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Animales , Femenino , Humanos , Ratones , Empalme Alternativo , Neoplasias de la Mama/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
EMBO Mol Med ; 15(2): e16554, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36597789

RESUMEN

Understanding the molecular mechanisms that contribute to the appearance of chemotherapy resistant cell populations is necessary to improve cancer treatment. We have now investigated the role of ß-catenin/CTNNB1 in the evolution of T-cell Acute Lymphoblastic Leukemia (T-ALL) patients and its involvement in therapy resistance. We have identified a specific gene signature that is directly regulated by ß-catenin, TCF/LEF factors and ZBTB33/Kaiso in T-ALL cell lines, which is highly and significantly represented in five out of six refractory patients from a cohort of 40 children with T-ALL. By subsequent refinement of this gene signature, we found that a subset of ß-catenin target genes involved with RNA-processing function are sufficient to segregate T-ALL refractory patients in three independent cohorts. We demonstrate the implication of ß-catenin in RNA and protein synthesis in T-ALL and provide in vitro and in vivo experimental evidence that ß-catenin is crucial for the cellular response to chemotherapy, mainly in the cellular recovery phase after treatment. We propose that combination treatments involving chemotherapy plus ß-catenin inhibitors will enhance chemotherapy response and prevent disease relapse in T-ALL patients.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , beta Catenina , Niño , Humanos , beta Catenina/metabolismo , ARN , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo
6.
Mol Oncol ; 16(16): 2899-2919, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35726693

RESUMEN

B-cell acute lymphoblastic leukemia (B-ALL) is the commonest childhood cancer. High hyperdiploidy (HHD) identifies the most frequent cytogenetic subgroup in childhood B-ALL. Although hyperdiploidy represents an important prognostic factor in childhood B-ALL, the specific chromosome gains with prognostic value in HHD-B-ALL remain controversial, and the current knowledge about the hierarchy of chromosome gains, clonal heterogeneity and chromosomal instability in HHD-B-ALL remains very limited. We applied automated sequential-iFISH coupled with single-cell computational modeling to identify the specific chromosomal gains of the eight typically gained chromosomes in a large cohort of 72 primary diagnostic (DX, n = 62) and matched relapse (REL, n = 10) samples from HHD-B-ALL patients with either favorable or unfavorable clinical outcome in order to characterize the clonal heterogeneity, specific chromosome gains and clonal evolution. Our data show a high degree of clonal heterogeneity and a hierarchical order of chromosome gains in DX samples of HHD-B-ALL. The rates of specific chromosome gains and clonal heterogeneity found in DX samples differ between HHD-B-ALL patients with favorable or unfavorable clinical outcome. In fact, our comprehensive analyses at DX using a computationally defined risk predictor revealed low levels of trisomies +18+10 and low levels of clonal heterogeneity as robust relapse risk factors in minimal residual disease (MRD)-negative childhood HHD-B-ALL patients: relapse-free survival beyond 5 years: 22.1% versus 87.9%, P < 0.0001 and 33.3% versus 80%, P < 0.0001, respectively. Moreover, longitudinal analysis of matched DX-REL HHD-B-ALL samples revealed distinct patterns of clonal evolution at relapse. Our study offers a reliable prognostic sub-stratification of pediatric MRD-negative HHD-B-ALL patients.


Asunto(s)
Aberraciones Cromosómicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Inestabilidad Cromosómica , Cromosomas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Riesgo
7.
Blood ; 140(1): 38-44, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35421218

RESUMEN

CD19-directed immunotherapies have revolutionized the treatment of advanced B-cell acute lymphoblastic leukemia (B-ALL). Despite initial impressive rates of complete remission (CR) many patients ultimately relapse. Patients with B-ALL successfully treated with CD19-directed T cells eventually relapse, which, coupled with the early onset of CD22 expression during B-cell development, suggests that preexisting CD34+CD22+CD19- (pre)-leukemic cells represent an "early progenitor origin-related" mechanism underlying phenotypic escape to CD19-directed immunotherapies. We demonstrate that CD22 expression precedes CD19 expression during B-cell development. CD34+CD19-CD22+ cells are found in diagnostic and relapsed bone marrow samples of ∼70% of patients with B-ALL, and their frequency increases twofold in patients with B-ALL in CR after CD19 CAR T-cell therapy. The median of CD34+CD19-CD22+ cells before treatment was threefold higher in patients in whom B-ALL relapsed after CD19-directed immunotherapy (median follow-up, 24 months). Fluorescence in situ hybridization analysis in flow-sorted cell populations and xenograft modeling revealed that CD34+CD19-CD22+ cells harbor the genetic abnormalities present at diagnosis and initiate leukemogenesis in vivo. Our data suggest that preleukemic CD34+CD19-CD22+ progenitors underlie phenotypic escape after CD19-directed immunotherapies and reinforce ongoing clinical studies aimed at CD19/CD22 dual targeting as a strategy for reducing CD19- relapses. The implementation of CD34/CD19/CD22 immunophenotyping in clinical laboratories for initial diagnosis and subsequent monitoring of patients with B-ALL during CD19-targeted therapy is encouraged.


Asunto(s)
Antígenos CD19 , Linfoma de Burkitt , Antígenos CD34 , Linfocitos B , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ , Recurrencia , Lectina 2 Similar a Ig de Unión al Ácido Siálico
8.
Genome Res ; 31(10): 1913-1926, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34548323

RESUMEN

The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Pronóstico , Microambiente Tumoral
9.
PLoS Comput Biol ; 17(9): e1009411, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529669

RESUMEN

Immunotherapies provide effective treatments for previously untreatable tumors and identifying tumor-specific epitopes can help elucidate the molecular determinants of therapy response. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs In Cancer), for the comprehensive identification of tumor-specific splicing-derived epitopes. Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE identified neoepitopes from tumor-specific splicing events that are potentially presented by MHC-I complexes. Analysis of multiple samples indicates that splicing alterations may affect the production of self-epitopes and generate more candidate neoepitopes than somatic mutations. Although there was no difference in the number of splicing-derived neoepitopes between responders and non-responders to immune therapy, higher MHC-I binding affinity was associated with a positive response. Our analyses highlight the diversity of the immunogenic impacts of tumor-specific splicing alterations and the importance of studying splicing alterations to fully characterize tumors in the context of immunotherapies. ISOTOPE is available at https://github.com/comprna/ISOTOPE.


Asunto(s)
Epítopos/genética , Epítopos/inmunología , Neoplasias/genética , Neoplasias/inmunología , Empalme Alternativo/genética , Empalme Alternativo/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/inmunología , Línea Celular Tumoral , Biología Computacional , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Masculino , Melanoma/genética , Melanoma/inmunología , Modelos Genéticos , Modelos Inmunológicos , Mutación , Neoplasias/terapia , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Empalme del ARN/genética , Empalme del ARN/inmunología , RNA-Seq
10.
Nat Commun ; 12(1): 1503, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686071

RESUMEN

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.


Asunto(s)
Neoplasias Encefálicas/inmunología , Líquido Cefalorraquídeo/inmunología , Leucocitos , Microambiente Tumoral/inmunología , Adenocarcinoma del Pulmón , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Pronóstico
12.
Blood ; 136(3): 313-327, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321174

RESUMEN

B-cell acute lymphoblastic leukemia (ALL; B-ALL) is the most common pediatric cancer, and high hyperdiploidy (HyperD) identifies the most common subtype of pediatric B-ALL. Despite HyperD being an initiating oncogenic event affiliated with childhood B-ALL, the mitotic and chromosomal defects associated with HyperD B-ALL (HyperD-ALL) remain poorly characterized. Here, we have used 54 primary pediatric B-ALL samples to characterize the cellular-molecular mechanisms underlying the mitotic/chromosome defects predicated to be early pathogenic contributors in HyperD-ALL. We report that HyperD-ALL blasts are low proliferative and show a delay in early mitosis at prometaphase, associated with chromosome-alignment defects at the metaphase plate leading to robust chromosome-segregation defects and nonmodal karyotypes. Mechanistically, biochemical, functional, and mass-spectrometry assays revealed that condensin complex is impaired in HyperD-ALL cells, leading to chromosome hypocondensation, loss of centromere stiffness, and mislocalization of the chromosome passenger complex proteins Aurora B kinase (AURKB) and Survivin in early mitosis. HyperD-ALL cells show chromatid cohesion defects and an impaired spindle assembly checkpoint (SAC), thus undergoing mitotic slippage due to defective AURKB and impaired SAC activity, downstream of condensin complex defects. Chromosome structure/condensation defects and hyperdiploidy were reproduced in healthy CD34+ stem/progenitor cells upon inhibition of AURKB and/or SAC. Collectively, hyperdiploid B-ALL is associated with a defective condensin complex, AURKB, and SAC.


Asunto(s)
Adenosina Trifosfatasas , Aurora Quinasa B , Aberraciones Cromosómicas , Cromosomas Humanos , Proteínas de Unión al ADN , Metafase/genética , Complejos Multiproteicos , Proteínas de Neoplasias , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
13.
Mol Cancer Res ; 16(7): 1112-1124, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29592900

RESUMEN

A major challenge in cancer research is to determine the biological and clinical significance of somatic mutations in noncoding regions. This has been studied in terms of recurrence, functional impact, and association to individual regulatory sites, but the combinatorial contribution of mutations to common RNA regulatory motifs has not been explored. Therefore, we developed a new method, MIRA (mutation identification for RNA alterations), to perform an unbiased and comprehensive study of significantly mutated regions (SMR) affecting binding sites for RNA-binding proteins (RBP) in cancer. Extracting signals related to RNA-related selection processes and using RNA sequencing (RNA-seq) data from the same specimens, we identified alterations in RNA expression and splicing linked to mutations on RBP binding sites. We found SRSF10 and MBNL1 motifs in introns, HNRPLL motifs at 5' UTRs, as well as 5' and 3' splice-site motifs, among others, with specific mutational patterns that disrupt the motif and impact RNA processing. MIRA facilitates the integrative analysis of multiple genome sites that operate collectively through common RBPs and aids in the interpretation of noncoding variants in cancer. MIRA is available at https://github.com/comprna/miraImplications: The study of recurrent cancer mutations on potential RBP binding sites reveals new alterations in introns, untranslated regions, and long noncoding RNAs that impact RNA processing and provide a new layer of insight that can aid in the interpretation of noncoding variants in cancer genomes. Mol Cancer Res; 16(7); 1112-24. ©2018 AACR.


Asunto(s)
Genoma Humano/genética , Neoplasias/genética , Motivos de Nucleótidos/genética , ARN no Traducido/genética , Empalme Alternativo/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones , Mutación/genética , Neoplasias/patología , Empalme del ARN/genética , Proteínas de Unión al ARN/genética
14.
Genome Med ; 8(1): 85, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27535130

RESUMEN

BACKGROUND: Phenotypic changes during cancer progression are associated with alterations in gene expression, which can be exploited to build molecular signatures for tumor stage identification and prognosis. However, it is not yet known whether the relative abundance of transcript isoforms may be informative for clinical stage and survival. METHODS: Using information theory and machine learning methods, we integrated RNA sequencing and clinical data from The Cancer Genome Atlas project to perform the first systematic analysis of the prognostic potential of transcript isoforms in 12 solid tumors to build new signatures for stage and prognosis. This study was also performed in breast tumors according to estrogen receptor (ER) status and melanoma tumors with proliferative and invasive phenotypes. RESULTS: Transcript isoform signatures accurately separate early from late-stage groups and metastatic from non-metastatic tumors, and are predictive of the survival of patients with undetermined lymph node invasion or metastatic status. These signatures show similar, and sometimes better, accuracies compared with known gene expression signatures in retrospective data and are largely independent of gene expression changes. Furthermore, we show frequent transcript isoform changes in breast tumors according to ER status, and in melanoma tumors according to the invasive or proliferative phenotype, and derive accurate predictive models of stage and survival within each patient subgroup. CONCLUSIONS: Our analyses reveal new signatures based on transcript isoform abundances that characterize tumor phenotypes and their progression independently of gene expression. Transcript isoform signatures appear especially relevant to determine lymph node invasion and metastasis and may potentially contribute towards current strategies of precision cancer medicine.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Melanoma/diagnóstico , ARN Mensajero/genética , Receptores de Estrógenos/genética , Neoplasias Cutáneas/diagnóstico , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Teoría de la Información , Metástasis Linfática , Aprendizaje Automático , Masculino , Melanoma/genética , Melanoma/mortalidad , Melanoma/patología , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/metabolismo , Receptores de Estrógenos/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Análisis de Supervivencia , Transcriptoma
15.
RNA ; 21(9): 1521-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26179515

RESUMEN

Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa.


Asunto(s)
Empalme Alternativo , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , ARN/metabolismo , Animales , Simulación por Computador , Humanos , Análisis de Secuencia de ARN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA