Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Immunol ; 14: 1260545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744352

RESUMEN

Histone deacetylase inhibitors (HDACi) are currently being explored for the treatment of both solid and hematological malignancies. Although originally thought to exert cytotoxic responses through tumor-intrinsic mechanisms by increasing expression of tumor suppressor genes, several studies have demonstrated that therapeutic responses depend on an intact adaptive immune system: particularly CD8 T cells. It is therefore critical to understand how HDACi directly affects T cells in order to rationally design regimens for combining with immunotherapy. In this study, we evaluated T cell responses to a novel class-selective HDACi (OKI-179, bocodepsin) by assessing histone acetylation levels, which revealed rapid responsiveness accompanied by an increase in CD4 and CD8 T cell frequencies in the blood. However, these rapid responses were transient, as histone acetylation and frequencies waned within 24 hours. This contrasts with in vitro models where high acetylation was sustained and continuous exposure to HDACi suppressed cytokine production. In vivo comparisons demonstrated that stopping OKI-179 treatment during PD-1 blockade was superior to continuous treatment. These findings provide novel insight into the direct effects of HDAC inhibitors on T cells and that treatment schedules that take into account acute T cell effects should be considered when combined with immunotherapies in order to fully harness the tumor-specific T cell responses in patients.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histonas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inmunoterapia , Protocolos Clínicos , Linfocitos T CD8-positivos
2.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37399356

RESUMEN

Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Microambiente Tumoral
3.
Cancers (Basel) ; 16(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38201519

RESUMEN

(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients (n = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity. Single-patient escalation cohorts followed a standard 3 + 3 design. (3) Results: The mean duration of treatment was 81.2 (range 11-447) days. The most frequent adverse events in all patients were nausea (70.6%), fatigue (47.1%), and thrombocytopenia (41.2%). The maximum tolerated dose (MTD) of OKI-179 was 450 mg with 4:3 and 200 mg with continuous dosing. Dose-limiting toxicities included decreased platelet count and nausea. Prolonged disease control was observed, including two patients with platinum-resistant ovarian cancer. Systemic exposure to the active metabolite exceeded the preclinical efficacy threshold at doses lower than the MTD and was temporally associated with increased histone acetylation in circulating T cells. (4) Conclusions: OKI-179 has a manageable safety profile at the recommended phase 2 dose (RP2D) of 300 mg daily on a 4:3 schedule with prophylactic oral antiemetics. OKI-179 is currently being investigated with the MEK inhibitor binimetinib in patients with NRAS-mutated melanoma in the phase 2 Nautilus trial.

4.
Addict Biol ; 26(2): e12889, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176824

RESUMEN

Alcohol abuse induces changes in microglia morphology and immune function, but whether microglia initiate or simply amplify the harmful effects of alcohol exposure is still a matter of debate. Here, we determine microglia function in acute and voluntary drinking behaviors using a colony-stimulating factor 1 receptor inhibitor (PLX5622). We show that microglia depletion does not alter the sedative or hypnotic effects of acute intoxication. Microglia depletion also does not change the escalation or maintenance of chronic voluntary alcohol consumption. Transcriptomic analysis revealed that although many immune genes have been implicated in alcohol abuse, downregulation of microglia genes does not necessitate changes in alcohol intake. Instead, microglia depletion and chronic alcohol result in compensatory upregulation of alcohol-responsive, reactive astrocyte genes, indicating astrocytes may play a role in regulation of these alcohol behaviors. Taken together, our behavioral and transcriptional data indicate that microglia are not the primary effector cell responsible for regulation of acute and voluntary alcohol behaviors. Because microglia depletion did not regulate acute or voluntary alcohol behaviors, we hypothesized that these doses were insufficient to activate microglia and recruit them to an effector phenotype. Therefore, we used a model of repeated immune activation using polyinosinic:polycytidylic acid (poly(I:C)) to activate microglia. Microglia depletion blocked poly(I:C)-induced escalations in alcohol intake, indicating microglia regulate drinking behaviors with sufficient immune activation. By testing the functional role of microglia in alcohol behaviors, we provide insight into when microglia are causal and when they are consequential for the transition from alcohol use to dependence.


Asunto(s)
Alcoholismo/patología , Microglía/efectos de los fármacos , Compuestos Orgánicos/farmacología , Consumo de Bebidas Alcohólicas/patología , Intoxicación Alcohólica/patología , Animales , Astrocitos/efectos de los fármacos , Enfermedad Crónica , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Destreza Motora/efectos de los fármacos , Receptores del Factor Estimulante de Colonias/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sueño/efectos de los fármacos
5.
Blood ; 136(16): 1837-1850, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32845007

RESUMEN

Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.


Asunto(s)
Comunicación Celular , Células Mieloides/inmunología , Células Mieloides/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Microambiente Tumoral , Biomarcadores , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Células Mieloides/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
6.
BMC Cancer ; 20(1): 359, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345237

RESUMEN

BACKGROUND: Therapy targeted to the human epidermal growth factor receptor type 2 (HER2) is used in combination with cytotoxic therapy in treatment of HER2+ breast cancer. Trastuzumab, a monoclonal antibody that targets HER2, has been shown pre-clinically to induce vascular changes that can increase delivery of chemotherapy. To quantify the role of immune modulation in treatment-induced vascular changes, this study identifies temporal changes in myeloid cell infiltration with corresponding vascular alterations in a preclinical model of HER2+ breast cancer following trastuzumab treatment. METHODS: HER2+ tumor-bearing mice (N = 46) were treated with trastuzumab or saline. After extraction, half of each tumor was analyzed by immunophenotyping using flow cytometry. The other half was quantified by immunohistochemistry to characterize macrophage infiltration (F4/80), vascularity (CD31 and α-SMA), proliferation (Ki67) and cellularity (H&E). Additional mice (N = 10) were used to quantify differences in tumor cytokines between control and treated groups. RESULTS: Immunophenotyping showed an increase in macrophage infiltration 24 h after trastuzumab treatment (P ≤ 0.05). With continued trastuzumab treatment, the M1 macrophage population increased (P = 0.02). Increases in vessel maturation index (i.e., the ratio of α-SMA to CD31) positively correlated with increases in tumor infiltrating M1 macrophages (R = 0.33, P = 0.04). Decreases in VEGF-A and increases in inflammatory cytokines (TNF-α, IL-1ß, CCL21, CCL7, and CXCL10) were observed with continued trastuzumab treatment (P ≤ 0.05). CONCLUSIONS: Preliminary results from this study in a murine model of HER2+ breast cancer show correlations between immune modulation and vascular changes, and reveals the potential for anti-HER2 therapy to reprogram immunosuppressive components of the tumor microenvironment. The quantification of immune modulation in HER2+ breast cancer, as well as the mechanistic insight of vascular alterations after anti-HER2 treatment, represent novel contributions and warrant further assessment for potential clinical translation.


Asunto(s)
Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Microvasos/inmunología , Células Mieloides/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Desnudos , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Immunother Precis Oncol ; 3(1): 3-15, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35756177

RESUMEN

Immunotherapy is a rapidly evolving treatment paradigm that holds promise to provide long-lasting survival benefits for patients with cancer. This promise, however, remains unfulfilled for the majority of patients with gastrointestinal (GI) cancers, as significant limitations in efficacy exist with immune checkpoint inhibitors (ICIs) in this disease group. A plethora of novel combination treatment strategies are currently being investigated in various clinical trials to make them more efficacious as our understanding of molecular mechanisms mediating resistance to immunotherapy advances. In this article, we summarize the current status of immune checkpoint blockade in GI cancers and discuss the biological rationales that underlie the emerging treatment strategies being tested in ongoing clinical trials in combination with ICIs. We also highlight the promising early results from these strategies and provide future perspectives on enhancing response to immunotherapy for patients with GI cancers.

8.
Nat Biotechnol ; 36(8): 758-764, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30010674

RESUMEN

Increased tryptophan (Trp) catabolism in the tumor microenvironment (TME) can mediate immune suppression by upregulation of interferon (IFN)-γ-inducible indoleamine 2,3-dioxygenase (IDO1) and/or ectopic expression of the predominantly liver-restricted enzyme tryptophan 2,3-dioxygenase (TDO). Whether these effects are due to Trp depletion in the TME or mediated by the accumulation of the IDO1 and/or TDO (hereafter referred to as IDO1/TDO) product kynurenine (Kyn) remains controversial. Here we show that administration of a pharmacologically optimized enzyme (PEGylated kynureninase; hereafter referred to as PEG-KYNase) that degrades Kyn into immunologically inert, nontoxic and readily cleared metabolites inhibits tumor growth. Enzyme treatment was associated with a marked increase in the tumor infiltration and proliferation of polyfunctional CD8+ lymphocytes. We show that PEG-KYNase administration had substantial therapeutic effects when combined with approved checkpoint inhibitors or with a cancer vaccine for the treatment of large B16-F10 melanoma, 4T1 breast carcinoma or CT26 colon carcinoma tumors. PEG-KYNase mediated prolonged depletion of Kyn in the TME and reversed the modulatory effects of IDO1/TDO upregulation in the TME.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Hidrolasas/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Humanos , Neoplasias/enzimología , Neoplasias/inmunología , Neoplasias/metabolismo , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 113(8): E1016-25, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26862168

RESUMEN

Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs). Systematic evaluation of the functional capacity of tumor-associated stromal cells revealed that myeloid cells, primarily DCs, are necessary and sufficient to support T-ALL survival ex vivo. DCs support T-ALL growth both in primary thymic tumors and at secondary tumor sites. To identify a molecular mechanism by which DCs support T-ALL growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) and insulin-like growth factor I receptor (Igf1r) on T-ALL cells, with concomitant expression of their ligands by tumor-associated DCs. Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and coculture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC-mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driving T-ALL growth, and implicate tumor-associated DCs and their mitogenic signals as auspicious therapeutic targets.


Asunto(s)
Células Dendríticas/inmunología , Proteínas de Neoplasias/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Receptores de Somatomedina/inmunología , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Supervivencia Celular , Células Dendríticas/patología , Femenino , Humanos , Masculino , Ratones , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptor IGF Tipo 1 , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/inmunología , Receptores de Somatomedina/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
10.
Cancer Immunol Res ; 3(5): 526-35, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25627655

RESUMEN

In preclinical tumor models, αOX40 therapy is often successful at treating small tumors, but is less effective once the tumors become large. For a tumor immunotherapy to be successful to cure large tumors, it will most likely require not only an agonist to boost effector T-cell function but also inhibitors of T-cell suppression. In this study, we show that combining αOX40 antibodies with an inhibitor of the TGFß receptor (SM16) synergizes to elicit complete regression of large established MCA205 and CT26 tumors. Evaluation of tumor-infiltrating T cells showed that SM16/αOX40 dual therapy resulted in an increase in proliferating granzyme B(+) CD8 T cells, which produced higher levels of IFNγ, compared with treatment with either agent alone. We also found that the dual treatment increased pSTAT3 expression in both CD4 and CD8 T cells isolated from tumors. Because others have published that STAT3 signaling is detrimental to T-cell function within the tumor microenvironment, we explored whether deletion of STAT3 in OX40-expressing cells would affect this potent combination therapy. Surprisingly, we found that deletion of STAT3 in OX40-expressing cells decreased the efficacy of this combination therapy, showing that the full therapeutic potential of this treatment depends on STAT3 signaling, most likely in the T cells of tumor-bearing mice.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias/metabolismo , Receptores OX40/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Línea Celular Tumoral , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores OX40/inmunología , Transducción de Señal
11.
Eur J Immunol ; 42(7): 1893-905, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22585674

RESUMEN

Surface expression of the IL-2 receptor α-chain (CD25) has been used to discriminate between CD4(+) CD25(HI) FOXP3(+) regulatory T (Treg) cells and CD4(+) CD25(NEG) FOXP3(-) non-Treg cells. However, this study reports that the majority of resting human memory CD4(+) FOXP3(-) T cells expresses intermediate levels of CD25 and that CD25 expression can be used to delineate a functionally distinct memory subpopulation. The CD25(NEG) memory T-cell population contains the vast majority of late differentiated cells that respond to antigens associated with chronic immune responses and are increased in patients with systemic lupus erythematosus (SLE). In contrast, the CD25(INT) memory T cells respond to antigens associated with recall responses, produce a greater array of cytokines, and are less dependent on costimulation for effector responses due to their expression of CD25. Lastly, compared to the CD25(NEG) and Treg-cell populations, the CD25(INT) memory population is lost to a greater degree from the blood of cancer patients treated with IL-2. Collectively, these results show that in humans, a large proportion of CD4(+) memory T cells express intermediate levels of CD25, and this CD25(INT) FOXP3(-) subset is a functionally distinct memory population that is uniquely affected by IL-2.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Memoria Inmunológica/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Neoplasias Renales/inmunología , Lupus Eritematoso Sistémico/inmunología , Melanoma/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación/métodos , Interleucina-2/uso terapéutico , Neoplasias Renales/sangre , Neoplasias Renales/tratamiento farmacológico , Lupus Eritematoso Sistémico/sangre , Masculino , Melanoma/sangre , Melanoma/tratamiento farmacológico , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA