Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Biomater ; 186: 141-155, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142531

RESUMEN

Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1ß and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.


Asunto(s)
Comunicación Celular , Macrófagos , Osteocitos , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/microbiología , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Técnicas de Cocultivo , Infecciones Relacionadas con Prótesis/patología , Infecciones Relacionadas con Prótesis/metabolismo , Infecciones Relacionadas con Prótesis/microbiología , Medios de Cultivo Condicionados/farmacología , Modelos Biológicos , Osteogénesis/efectos de los fármacos
2.
Clin Implant Dent Relat Res ; 26(2): 266-280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37357340

RESUMEN

BACKGROUND: Nonresorbable membranes promote bone formation during guided bone regeneration (GBR), yet the relationships between membrane properties and molecular changes in the surrounding tissue are largely unknown. AIM: To compare the molecular events in the overlying soft tissue, the membrane, and the underlying bone defect during GBR using dual-layered expanded membranes versus dense polytetrafluoroethylene (PTFE) membranes. MATERIALS AND METHODS: Rat femur defects were treated with either dense PTFE (d-PTFE) or dual-layered expanded PTFE (dual e-PTFE) or left untreated as a sham. Samples were collected after 6 and 28 days for gene expression, histology, and histomorphometry analyses. RESULTS: The two membranes promoted the overall bone formation compared to sham. Defects treated with dual e-PTFE exhibited a significantly higher proportion of new bone in the top central region after 28 days. Compared to that in the sham, the soft tissue in the dual e-PTFE group showed 2-fold higher expression of genes related to regeneration (FGF-2 and FOXO1) and vascularization (VEGF). Furthermore, compared to cells in the d-PTFE group, cells in the dual e-PTFE showed 2.5-fold higher expression of genes related to osteogenic differentiation (BMP-2), regeneration (FGF-2 and COL1A1), and vascularization (VEGF), in parallel with lower expression of proinflammatory cytokines (IL-6 and TNF-α). Multiple correlations were found between the molecular activities in membrane-adherent cells and those in the soft tissue. CONCLUSION: Selective surface modification of the two sides of the e-PTFE membrane constitutes a novel means of modulating the tissue response and promoting bone regeneration.


Asunto(s)
Regeneración Tisular Guiada Periodontal , Osteogénesis , Ratas , Animales , Politetrafluoroetileno , Factor 2 de Crecimiento de Fibroblastos , Factor A de Crecimiento Endotelial Vascular , Membranas Artificiales , Regeneración Ósea/genética , Expresión Génica
3.
BMJ Open ; 12(9): e058168, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109038

RESUMEN

INTRODUCTION: Prosthetic joint infections (PJIs) are disastrous complications for patients and costly for healthcare organisations. They may promote bacterial resistance due to the extensive antibiotic use necessary in the PJI treatment. The PJI incidence is estimated to be 1%-3%, but the absolute numbers worldwide are high and increasing as large joint arthroplasties are performed by the millions each year. Current treatment algorithms, based on implant preserving surgery or full revision followed by a semitailored antibiotic regimen for no less than 2-3 months, lead to infection resolution in approximately 60% and 90%, respectively. Antibiotic choice is currently guided by minimum inhibitory concentrations (MICs) of free-living bacteria and not of bacteria in biofilm growth mode. Biofilm assays with relatively rapid output for the determination of minimum biofilm eradication concentrations (MBECs) have previously been developed but their clinical usefulness have not been established. METHODS AND ANALYSIS: This single-blinded, two-arm randomised study of hip or knee staphylococcal PJI will evaluate 6-week standard of care (MIC guided), or an alternative antibiotic regimen according to an MBEC-guided-based decision algorithm. Sixty-four patients with a first-time PJI treated according to the debridement, antibiotics, and implant retention principle will be enrolled at a single tertiary orthopaedic centre (Sahlgrenska University Hospital). Patients will receive 14 days of standard parenteral antibiotics before entering the comparative study arms. The primary outcome measurement is the proportion of changes in antimicrobial regimen from first-line treatment dependent on randomisation arm. Secondary endpoints are unresolved infection, how microbial properties including biofilm abilities and emerging antimicrobial resistance correlate to infection outcomes, patient reported outcomes and costs with a 12-month follow-up. ETHICS AND DISSEMINATION: Approval is received from the Swedish Ethical Review Authority, no 2020-01471 and the Swedish Medical Products Agency, EudraCT, no 2020-003444-80. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov ID: NCT04488458.


Asunto(s)
Antiinfecciosos , Artritis Infecciosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Biomaterials ; 278: 121158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619562

RESUMEN

Staphylococcus aureus and Staphylococcus epidermidis are the bacteria that most frequently cause osteomyelitis. This study aimed to determine whether staphylococci isolated from osteomyelitis associated with septic loosening of orthopedic prostheses release extracellular vesicles (EVs) and, if so, to determine tentative immunomodulatory effects on the human monocytic cell line THP-1. EVs were isolated from bacterial cultures using filtration and ultracentrifugation and characterized by scanning electron microscopy, nanoparticle tracking analysis and Western Blot. The cytotoxic effect of EVs was analyzed by NucleoCounter and lactate dehydrogenase (LDH) analyses. Confocal laser scanning microscopy was employed to visualize the uptake of EVs by THP-1 cells. Activation of the transcription factor nuclear factor-κB (NF-κB) was determined in THP1-Blue™ NF-κB cells, and the gene expression and secretion of cytokines were determined by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. All investigated strains, irrespective of their biofilm formation ability, were able to secrete EVs in vitro. The S. aureus strains produced significantly more EVs than the S. epidermidis strains. Both S. aureus-derived EVs and S. epidermidis-derived EVs were internalized by THP-1 cells, upregulated Toll-like receptor 3 (TLR3) gene expression, activated NF-κB, and promoted the gene expression and secretion of interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, matrix metallopeptidase (MMP)-9 and IL-10. Whereas EVs from both staphylococcal species upregulated the proapoptotic DNA damage-inducible transcript 4 (DDIT4) gene and downregulated the antiapoptotic B-cell lymphoma 2 (Bcl-2) gene, cytolysis was preferentially induced in S. aureus EV-stimulated cells, possibly related to the expression of cytolytic proteins predominantly in S. aureus EVs. In conclusion, staphylococcal EVs possess potent cytolytic and immunomodulatory properties.


Asunto(s)
Prótesis Anclada al Hueso , Vesículas Extracelulares , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Staphylococcus epidermidis
5.
J Orthop Translat ; 30: 31-40, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34485075

RESUMEN

BACKGROUND: Periprosthetic joint infections (PJI) are challenging complications following arthroplasty. Staphylococci are a frequent cause of PJI and known biofilm producers. Biofilm formation decreases antimicrobial susceptibility, thereby challenging favourable treatment outcomes. The aims of this study were to characterize the biofilm abilities and antimicrobial susceptibilities of staphylococci causing first-time PJI and correlate them to clinical outcome (infection resolution and recurrence). METHODS: Reoperations for PJI of the hip or knee between 1st January 2012 to 30th June 2015 performed at the Sahlgrenska University Hospital were identified in a local database. Medical records were reviewed and clinical parameters recorded for patients whose intraoperative bacterial isolates had been stored at the clinical laboratory. Staphylococcal strains isolated from reoperations due to first-time PJI were characterised by their ability to form biofilms using the microtiter plate test. Antimicrobial susceptibility of the strains was determined by minimum inhibitory concentration (MIC) when grown planktonically, and by minimum biofilm eradication concentration (MBEC) when grown as biofilms. MBEC determination was conducted using the Calgary biofilm device (CBD) and a custom-made antimicrobial susceptibility plate containing eight clinically relevant antimicrobial agents. RESULTS: The study group included 49 patients (70 bacterial strains) from first-time PJI, whereof 24 (49%) patients had recurrent infection. Strong biofilm production was significantly associated with recurrent infection. Patients infected with strong biofilm producers had a five-fold increased risk for recurrent infection. Strains grown as biofilms were over 8000 times more resistant to antimicrobial agents compared to planktonic cultures. Biofilms were more susceptible to rifampicin compared to other antimicrobials in the assay. Increased biofilm susceptibility (MBEC â€‹> â€‹MIC) was observed for the majority of the bacterial strains and antimicrobial agents. CONCLUSIONS: Strong biofilm production was significantly associated with increased antimicrobial resistance and PJI recurrence. This underscores the importance of determining biofilm production and susceptibility as part of routine diagnostics in PJI. Strong staphylococcal biofilm production may have implications on therapeutic choices and suggest more extensive surgery. Furthermore, despite the increased biofilm resistance to rifampicin, results from this study support its use in staphylococcal PJI. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Like for many biomaterial-associated infections, staphylococci are a common cause of PJI. Their ability to adhere to surfaces and produce biofilms on medical devices is proposed to play a role. However, clinical studies where biofilm properties are directly linked to patient outcome are scarce. This study demonstrates that the majority of staphylococci isolated from first-time PJI were biofilm producers with increased antimicrobial resistance. Patients suffering an infection caused by a staphylococcal strain with strong biofilm production ability had a five-fold greater risk of recurrent infection. This novel finding suggests the importance of evaluating biofilm production as a diagnostic procedure for the guidance of treatment decisions in PJI.

6.
Front Cell Infect Microbiol ; 11: 640899, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859952

RESUMEN

Osseointegration is a well-established concept used in applications including the percutaneous Bone-Anchored Hearing System (BAHS) and auricular rehabilitation. To date, few retrieved implants have been described. A systematic review including cases where percutaneous bone-anchored implants inserted in the temporal bone were retrieved and analyzed was performed. We also present the case of a patient who received a BAHS for mixed hearing loss. After the initial surgery, several episodes of soft tissue inflammation accompanied by pain were observed, leading to elective abutment removal 14 months post-surgery. Two years post-implantation, the implant was removed due to pain and subjected to a multiscale and multimodal analysis: microbial DNA using molecular fingerprinting, gene expression using quantitative real-time polymerase chain reaction (qPCR), X-ray microcomputed tomography (micro-CT), histology, histomorphometry, backscattered scanning electron microscopy (BSE-SEM), Raman spectroscopy, and fluorescence in situ hybridization (FISH). Evidence of osseointegration was provided via micro-CT, histology, BSE-SEM, and Raman spectroscopy. Polymicrobial colonization in the periabutment area and on the implant, including that with Staphylococcus aureus and Staphylococcus epidermidis, was determined using a molecular analysis via a 16S-23S rDNA interspace [IS]-region-based profiling method (IS-Pro). The histology suggested bacterial colonization in the skin and in the peri-implant bone. FISH confirmed the localization of S. aureus and coagulase-negative staphylococci in the skin. Ten articles (54 implants, 47 patients) met the inclusion criteria for the literature search. The analyzed samples were either BAHS (35 implants) or bone-anchored aural epitheses (19 implants) in situ between 2 weeks and 8 years. The main reasons for elective removal were nonuse/changes in treatment, pain, or skin reactions. Most samples were evaluated using histology, demonstrating osseointegration, but with the absence of bone under the implants' proximal flange. Taken together, the literature and this case report show clear evidence of osseointegration, despite prominent complications. Nevertheless, despite implant osseointegration, chronic pain related to the BAHS may be associated with a chronic bacterial infection and raised inflammatory response in the absence of macroscopic signs of infection. It is suggested that a multimodal analysis of peri-implant health provides possibilities for device improvements and to guide diagnostic and therapeutic strategies to alleviate the impact of complications.


Asunto(s)
Prótesis Anclada al Hueso , Audífonos , Audición , Humanos , Hibridación Fluorescente in Situ , Inflamación , Dolor , Staphylococcus aureus , Microtomografía por Rayos X
7.
Eur Arch Otorhinolaryngol ; 275(6): 1395-1408, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29623410

RESUMEN

PURPOSE: In this prospective clinical pilot study, abutments with different topologies (machined versus polished) were compared with respect to the clinical outcome and the microbiological profile. Furthermore, three different sampling methods (retrieval of abutment, collection of peri-abutment exudate using paper-points, and a small peri-abutment soft-tissue biopsy) were evaluated for the identification and quantification of colonising bacteria. METHODS: Twelve patients, seven with machined abutment and five with polished abutment, were included in the analysis. Three different sampling procedures were employed for the identification and quantification of colonising bacteria from baseline up to 12 months, using quantitative culturing. Clinical outcome measures (Holgers score, hygiene, pain, numbness and implant stability) were investigated. RESULTS: The clinical parameters, and total viable bacteria per abutment or in tissue biopsies did not differ significantly between the polished and machined abutments. The total CFU/mm2 abutment and CFU/peri-abutment fluid space of anaerobes, aerobes and staphylococci were significantly higher for the polished abutment. Anaerobic bacteria were detected in the tissue biopsies before BAHS implantation. Anaerobes and Staphylococcus spp. were detected in all three compartments after BAHS installation. For most patients (10/12), the same staphylococcal species were found in at least two of the three compartments at the same time-point. The common skin coloniser Staphylococcus epidermidis was identified in all patients but one (11/12), whereas the pathogen Staphylococcus aureus was isolated in five of the patients. Several associations between clinical and microbiological parameters were found. CONCLUSIONS: There was no difference in the clinical outcome with the use of polished versus machined abutment at 3 and 12 months after implantation. The present pilot trial largely confirmed a suitable study design, sampling and analytical methodology to determine the effects of modified BAHS abutment properties. LEVEL OF EVIDENCE: 2. Controlled prospective comparative study.


Asunto(s)
Audífonos/microbiología , Pérdida Auditiva/microbiología , Pérdida Auditiva/terapia , Anclas para Sutura/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Carga Bacteriana , Diseño de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos
8.
Plast Reconstr Surg Glob Open ; 3(8): e491, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26495204

RESUMEN

Autologous bone or inert alloplastic materials used in cranial reconstructions are techniques that are associated with resorption, infection, and implant exposure. As an alternative, a calcium phosphate-based implant was developed and previously shown to potentially stimulate bone growth. We here uncover evidence of induced bone formation in 2 patients. Histological examination 9 months postoperatively showed multinuclear cells in the central defect zone and bone ingrowth in the bone-implant border zone. An increased expression of bone-associated markers was detected. The other patient was investigated 50 months postoperatively. Histological examination revealed ceramic materials covered by vascularized compact bone. The bone regenerative effect induced by the implant may potentially improve long-term clinical outcome compared with conventional techniques, which needs to be verified in a clinical study.

9.
Biomaterials ; 41: 106-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25522970

RESUMEN

Infection constitutes a major risk for implant failure, but the reasons why biomaterial sites are more vulnerable than normal tissue are not fully elucidated. In this study, a soft tissue infection model was developed, allowing the analysis of cellular and molecular responses in each of the sub-compartments of the implant-tissue interface (on the implant surface, in the surrounding exudate and in the tissue). Smooth and nanostructured titanium disks with or without noble metal chemistry (silver, gold, palladium), and sham sites, were inoculated with Staphylococcus epidermidis and analysed with respect to number of viable bacteria, number, viability and gene expression of host cells, and using different morphological techniques after 4 h, 24 h and 72 h. Non-infected rats were controls. Results showed a transient inflammatory response at control sites, whereas bacterial administration resulted in higher recruitment of inflammatory cells (mainly polymorphonuclear), higher, continuous cell death and higher gene expression of tumour necrosis factor-alpha, interleukin-6, interleukin-8, Toll-like receptor 2 and elastase. At all time points, S. epidermidis was predominantly located in the interface zone, extra- and intracellularly, and lower levels were detected on the implants compared with surrounding exudate. This model allows detailed analysis of early events in inflammation and infection associated to biomaterials in vivo leading to insights into host defence mechanisms in biomaterial-associated infections.


Asunto(s)
Materiales Biocompatibles/efectos adversos , Inflamación/patología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus epidermidis/efectos de los fármacos , Animales , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ensayo de Materiales , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Espectroscopía de Fotoelectrones , Proyectos Piloto , Prótesis e Implantes , Ratas Sprague-Dawley , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/ultraestructura , Propiedades de Superficie
10.
Int J Nanomedicine ; 9: 775-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24550671

RESUMEN

The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly promoted nor attenuated the activity of monocytes when exposed to zymosan particles or S. epidermidis.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Nanopartículas del Metal , Monocitos/inmunología , Staphylococcus epidermidis/fisiología , Adhesión Bacteriana , Citocinas/genética , Expresión Génica , Oro , Humanos , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Monocitos/fisiología , Monocitos/ultraestructura , Nanomedicina , Fagocitosis , Poliestirenos , Staphylococcus epidermidis/inmunología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA