Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Brain ; 147(7): 2384-2399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38462574

RESUMEN

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Proto-Oncogenes Mas , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Neuronas/metabolismo , Proteínas tau/metabolismo , Ratones , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Humanos , Ratones Transgénicos
2.
Nat Methods ; 21(3): 488-500, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361019

RESUMEN

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.


Asunto(s)
Herpesvirus Humano 8 , Manihot , Sarcoma de Kaposi , Sarcoma de Kaposi/metabolismo , Proteínas Virales/metabolismo , Manihot/metabolismo , Latencia del Virus , Herpesvirus Humano 8/metabolismo
3.
Cancer Cell ; 40(5): 524-544.e5, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35537413

RESUMEN

There is a need for better classification and understanding of tumor-infiltrating lymphocytes (TILs). Here, we applied advanced functional genomics to interrogate 9,000 human tumors and multiple single-cell sequencing sets using benchmarked T cell states, comprehensive T cell differentiation trajectories, human and mouse vaccine responses, and other human TILs. Compared with other T cell states, enrichment of T memory/resident memory programs was observed across solid tumors. Trajectory analysis of single-cell melanoma CD8+ TILs also identified a high fraction of memory/resident memory-scoring TILs in anti-PD-1 responders, which expanded post therapy. In contrast, TILs scoring highly for early T cell activation, but not exhaustion, associated with non-response. Late/persistent, but not early activation signatures, prognosticate melanoma survival, and co-express with dendritic cell and IFN-γ response programs. These data identify an activation-like state associated to poor response and suggest successful memory conversion, above resuscitation of exhaustion, is an under-appreciated aspect of successful anti-tumoral immunity.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Melanoma , Animales , Linfocitos T CD8-positivos , Diferenciación Celular , Humanos , Melanoma/genética , Melanoma/terapia , Ratones , Receptor de Muerte Celular Programada 1
4.
Sci Transl Med ; 13(591)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910979

RESUMEN

Treatment of solid cancers with chimeric antigen receptor (CAR) T cells is plagued by the lack of ideal target antigens that are both absolutely tumor specific and homogeneously expressed. We show that multi-antigen prime-and-kill recognition circuits provide flexibility and precision to overcome these challenges in the context of glioblastoma. A synNotch receptor that recognizes a specific priming antigen, such as the heterogeneous but tumor-specific glioblastoma neoantigen epidermal growth factor receptor splice variant III (EGFRvIII) or the central nervous system (CNS) tissue-specific antigen myelin oligodendrocyte glycoprotein (MOG), can be used to locally induce expression of a CAR. This enables thorough but controlled tumor cell killing by targeting antigens that are homogeneous but not absolutely tumor specific. Moreover, synNotch-regulated CAR expression averts tonic signaling and exhaustion, maintaining a higher fraction of the T cells in a naïve/stem cell memory state. In immunodeficient mice bearing intracerebral patient-derived xenografts (PDXs) with heterogeneous expression of EGFRvIII, a single intravenous infusion of EGFRvIII synNotch-CAR T cells demonstrated higher antitumor efficacy and T cell durability than conventional constitutively expressed CAR T cells, without off-tumor killing. T cells transduced with a synNotch-CAR circuit primed by the CNS-specific antigen MOG also exhibited precise and potent control of intracerebral PDX without evidence of priming outside of the brain. In summary, by using circuits that integrate recognition of multiple imperfect but complementary antigens, we improve the specificity, completeness, and persistence of T cells directed against glioblastoma, providing a general recognition strategy applicable to other solid tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Glioblastoma/terapia , Inmunoterapia Adoptiva , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Kidney Int ; 99(3): 498-510, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33637194

RESUMEN

Chronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/terapia , Adulto , Humanos , Riñón , Medicina de Precisión , Estudios Prospectivos , Proteómica , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia
6.
Genome Res ; 31(2): 337-347, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33361113

RESUMEN

Understanding the changes in diverse molecular pathways underlying the development of breast tumors is critical for improving diagnosis, treatment, and drug development. Here, we used RNA-profiling of canine mammary tumors (CMTs) coupled with a robust analysis framework to model molecular changes in human breast cancer. Our study leveraged a key advantage of the canine model, the frequent presence of multiple naturally occurring tumors at diagnosis, thus providing samples spanning normal tissue and benign and malignant tumors from each patient. We showed human breast cancer signals, at both expression and mutation level, are evident in CMTs. Profiling multiple tumors per patient enabled by the CMT model allowed us to resolve statistically robust transcription patterns and biological pathways specific to malignant tumors versus those arising in benign tumors or shared with normal tissues. We showed that multiple histological samples per patient is necessary to effectively capture these progression-related signatures, and that carcinoma-specific signatures are predictive of survival for human breast cancer patients. To catalyze and support similar analyses and use of the CMT model by other biomedical researchers, we provide FREYA, a robust data processing pipeline and statistical analyses framework.

7.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197228

RESUMEN

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Asunto(s)
Guías como Asunto , Riñón/patología , Medicina de Precisión , Biopsia , Humanos , Reproducibilidad de los Resultados
8.
Cell Syst ; 11(3): 215-228.e5, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32916097

RESUMEN

Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic efficacy of chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico screen to identify multi-antigen signatures that improve tumor discrimination by CAR T cells engineered to integrate multiple antigen inputs via Boolean logic, e.g., AND and NOT. We screen >2.5 million dual antigens and ∼60 million triple antigens across 33 tumor types and 34 normal tissues. We find that dual antigens significantly outperform the best single clinically investigated CAR targets and confirm key predictions experimentally. Further, we identify antigen triplets that are predicted to show close to ideal tumor-versus-normal tissue discrimination for several tumor types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for improving tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web server resource (antigen.princeton.edu).


Asunto(s)
Antígenos de Neoplasias/metabolismo , Inmunoterapia Adoptiva/métodos , Humanos
9.
N Engl J Med ; 383(3): 218-228, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32668112

RESUMEN

BACKGROUND: Rheumatoid arthritis, like many inflammatory diseases, is characterized by episodes of quiescence and exacerbation (flares). The molecular events leading to flares are unknown. METHODS: We established a clinical and technical protocol for repeated home collection of blood in patients with rheumatoid arthritis to allow for longitudinal RNA sequencing (RNA-seq). Specimens were obtained from 364 time points during eight flares over a period of 4 years in our index patient, as well as from 235 time points during flares in three additional patients. We identified transcripts that were differentially expressed before flares and compared these with data from synovial single-cell RNA-seq. Flow cytometry and sorted-blood-cell RNA-seq in additional patients were used to validate the findings. RESULTS: Consistent changes were observed in blood transcriptional profiles 1 to 2 weeks before a rheumatoid arthritis flare. B-cell activation was followed by expansion of circulating CD45-CD31-PDPN+ preinflammatory mesenchymal, or PRIME, cells in the blood from patients with rheumatoid arthritis; these cells shared features of inflammatory synovial fibroblasts. Levels of circulating PRIME cells decreased during flares in all 4 patients, and flow cytometry and sorted-cell RNA-seq confirmed the presence of PRIME cells in 19 additional patients with rheumatoid arthritis. CONCLUSIONS: Longitudinal genomic analysis of rheumatoid arthritis flares revealed PRIME cells in the blood during the period before a flare and suggested a model in which these cells become activated by B cells in the weeks before a flare and subsequently migrate out of the blood into the synovium. (Funded by the National Institutes of Health and others.).


Asunto(s)
Artritis Reumatoide/sangre , Linfocitos B/fisiología , Expresión Génica , Células Madre Mesenquimatosas , Análisis de Secuencia de ARN/métodos , Adulto , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Femenino , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Gravedad del Paciente , Encuestas y Cuestionarios , Brote de los Síntomas , Líquido Sinovial/citología
10.
JCI Insight ; 5(6)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32107344

RESUMEN

To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.


Asunto(s)
Células Endoteliales/patología , Perfilación de la Expresión Génica/métodos , Glomeruloesclerosis Focal y Segmentaria/patología , Biomarcadores/análisis , Humanos
12.
Bioinformatics ; 36(4): 994-999, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31529022

RESUMEN

MOTIVATION: Breast cancer consists of multiple distinct tumor subtypes, and results from epigenetic and genetic aberrations that give rise to distinct transcriptional profiles. Despite previous efforts to understand transcriptional deregulation through transcription factor networks, the transcriptional mechanisms leading to subtypes of the disease remain poorly understood. RESULTS: We used a sophisticated computational search of thousands of expression datasets to define extended signatures of distinct breast cancer subtypes. Using ENCODE ChIP-seq data of surrogate cell lines and motif analysis we observed that these subtypes are determined by a distinct repertoire of lineage-specific transcription factors. Furthermore, specific pattern and abundance of copy number and DNA methylation changes at these TFs and targets, compared to other genes and to normal cells were observed. Overall, distinct transcriptional profiles are linked to genetic and epigenetic alterations at lineage-specific transcriptional regulators in breast cancer subtypes. AVAILABILITY AND IMPLEMENTATION: The analysis code and data are deposited at https://bitbucket.org/qzhu/breast.cancer.tf/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Epigénesis Genética , Neoplasias de la Mama , Metilación de ADN , Epigenómica , Humanos , Factores de Transcripción
13.
Cell Syst ; 8(2): 152-162.e6, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30685436

RESUMEN

A key challenge for the diagnosis and treatment of complex human diseases is identifying their molecular basis. Here, we developed a unified computational framework, URSAHD (Unveiling RNA Sample Annotation for Human Diseases), that leverages machine learning and the hierarchy of anatomical relationships present among diseases to integrate thousands of clinical gene expression profiles and identify molecular characteristics specific to each of the hundreds of complex diseases. URSAHD can distinguish between closely related diseases more accurately than literature-validated genes or traditional differential-expression-based computational approaches and is applicable to any disease, including rare and understudied ones. We demonstrate the utility of URSAHD in classifying related nervous system cancers and experimentally verifying novel neuroblastoma-associated genes identified by URSAHD. We highlight the applications for potential targeted drug-repurposing and for quantitatively assessing the molecular response to clinical therapies. URSAHD is freely available for public use, including the use of underlying models, at ursahd.princeton.edu.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Aprendizaje Automático/normas , Transcriptoma/genética , Humanos
14.
Oncoimmunology ; 7(11): e1457598, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30377556

RESUMEN

A high concentration of circulating vascular endothelial growth factor (VEGF) in cancer patients is associated with an aggressive tumor phenotype. Here, serum levels of 27 cytokines and blood cell counts were assessed in breast cancer patients receiving neoadjuvant chemotherapy with or without bevacizumab (Bev) in a randomized cohort of 132 patients with non-metastatic HER2-negative tumors. Cytokine levels were determined prior to treatment and at various time-points. The cytotoxic chemotherapy regimen of fluorouracil, epirubicin, and cyclophosphamide (FEC) had a profound impact on both circulating white blood cells and circulating cytokine levels. At the end of FEC treatment, the global decrease in cytokine levels correlated with the drop in white blood cell counts and was significantly greater in the patients of the Bev arm for cytokines, such as VEGF-A, IL-12, IP-10 and IL-10. Among patients who received Bev, those with pathological complete response (pCR) exhibited significantly lower levels of VEGF-A, IFN-γ, TNF-α and IL-4 than patients without pCR. This effect was not observed in the chemotherapy-only arm. Certain circulating cytokine profiles were found to correlate with different immune cell types at the tumor site. For the Bev arm patients, the serum cytokine levels correlated with higher levels of cytotoxic T cells at the end of the therapy regimen, which was indicative of treatment response. The higher response rate for Bev-treated patients and stronger correlations between serum cytokine levels and infiltrating CD8T cells merits further investigation.

15.
Nat Biotechnol ; 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30346941

RESUMEN

Effective discovery of causal disease genes must overcome the statistical challenges of quantitative genetics studies and the practical limitations of human biology experiments. Here we developed diseaseQUEST, an integrative approach that combines data from human genome-wide disease studies with in silico network models of tissue- and cell-type-specific function in model organisms to prioritize candidates within functionally conserved processes and pathways. We used diseaseQUEST to predict candidate genes for 25 different diseases and traits, including cancer, longevity, and neurodegenerative diseases. Focusing on Parkinson's disease (PD), a diseaseQUEST-directed Caenhorhabditis elegans behavioral screen identified several candidate genes, which we experimentally verified and found to be associated with age-dependent motility defects mirroring PD clinical symptoms. Furthermore, knockdown of the top candidate gene, bcat-1, encoding a branched chain amino acid transferase, caused spasm-like 'curling' and neurodegeneration in C. elegans, paralleling decreased BCAT1 expression in PD patient brains. diseaseQUEST is modular and generalizable to other model organisms and human diseases of interest.

16.
PLoS Comput Biol ; 14(5): e1006105, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29758032

RESUMEN

A common goal in data-analysis is to sift through a large data-matrix and detect any significant submatrices (i.e., biclusters) that have a low numerical rank. We present a simple algorithm for tackling this biclustering problem. Our algorithm accumulates information about 2-by-2 submatrices (i.e., 'loops') within the data-matrix, and focuses on rows and columns of the data-matrix that participate in an abundance of low-rank loops. We demonstrate, through analysis and numerical-experiments, that this loop-counting method performs well in a variety of scenarios, outperforming simple spectral methods in many situations of interest. Another important feature of our method is that it can easily be modified to account for aspects of experimental design which commonly arise in practice. For example, our algorithm can be modified to correct for controls, categorical- and continuous-covariates, as well as sparsity within the data. We demonstrate these practical features with two examples; the first drawn from gene-expression analysis and the second drawn from a much larger genome-wide-association-study (GWAS).


Asunto(s)
Algoritmos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Trastorno Bipolar/genética , Neoplasias de la Mama/genética , Análisis por Conglomerados , Femenino , Humanos , Masculino
17.
Oncotarget ; 8(34): 57121-57133, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915659

RESUMEN

The tumor microenvironment is now widely recognized for its role in tumor progression, treatment response, and clinical outcome. The intratumoral immunological landscape, in particular, has been shown to exert both pro-tumorigenic and anti-tumorigenic effects. Identifying immunologically active or silent tumors may be an important indication for administration of therapy, and detecting early infiltration patterns may uncover factors that contribute to early risk. Thus far, direct detailed studies of the cell composition of tumor infiltration have been limited; with some studies giving approximate quantifications using immunohistochemistry and other small studies obtaining detailed measurements by isolating cells from excised tumors and sorting them using flow cytometry. Herein we utilize a machine learning based approach to identify lymphocyte markers with which we can quantify the presence of B cells, cytotoxic T-lymphocytes, T-helper 1, and T-helper 2 cells in any gene expression data set and apply it to studies of breast tissue. By leveraging over 2,100 samples from existing large scale studies, we are able to find an inherent cell heterogeneity in clinically characterized immune infiltrates, a strong link between estrogen receptor activity and infiltration in normal and tumor tissues, changes with genomic complexity, and identify characteristic differences in lymphocyte expression among molecular groupings. With our extendable methodology for capturing cell type specific signal we systematically studied immune infiltration in breast cancer, finding an inverse correlation between beneficial lymphocyte infiltration and estrogen receptor activity in normal breast tissue and reduced infiltration in estrogen receptor negative tumors with high genomic complexity.

18.
Curr Pharm Des ; 23(32): 4716-4725, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28699527

RESUMEN

In the microenvironment of a malignancy, tumor cells do not exist in isolation, but rather in a diverse ecosystem consisting not only of heterogeneous tumor-cell clones, but also normal cell types such as fibroblasts, vasculature, and an extensive pool of immune cells at numerous possible stages of activation and differentiation. This results in a complex interplay of diverse cellular signaling systems, where the immune cell component is now established to influence cancer progression and therapeutic response. It is experimentally difficult and laborious to comprehensively and systematically profile these distinct cell types from heterogeneous tumor samples in order to capitalize on potential therapeutic and biomarker discoveries. One emerging solution to address this challenge is to computationally extract cell-type specific information directly from bulk tumors. Such in silico approaches are advantageous because they can capture both the cell-type specific profiles and the tissue systems level of cell-cell interactions. Accurately and comprehensively predicting these patterns in tumors is an important challenge to overcome, not least given the success of immunotherapeutic drug treatment of several human cancers. This is especially challenging for subsets of closely related immune cell phenotypes with relatively small gene expression differences, which have critical functional distinctions. Here, we outline the existing and emerging novel bioinformatics strategies that can be used to profile the tumor immune landscape.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Antineoplásicos Inmunológicos/administración & dosificación , Biología Computacional/métodos , Simulación por Computador , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/inmunología , Neoplasias/patología , Fenotipo
19.
Cell ; 170(1): 127-141.e15, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666115

RESUMEN

Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment.


Asunto(s)
Interferón gamma/inmunología , Melanoma/inmunología , Monocitos/inmunología , Metástasis de la Neoplasia/patología , Neoplasias Cutáneas/inmunología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Microambiente Tumoral , Animales , Diferenciación Celular , Células Dendríticas/inmunología , Homeostasis , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Monocitos/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transcriptoma
20.
Mol Cancer Res ; 13(3): 493-501, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25351767

RESUMEN

UNLABELLED: Lymphocytic infiltration is associated with better prognosis in several epithelial malignancies including breast cancer. The tumor suppressor TP53 is mutated in approximately 30% of breast adenocarcinomas, with varying frequency across molecular subtypes. In this study of 1,420 breast tumors, we tested for interaction between TP53 mutation status and tumor subtype determined by PAM50 and integrative cluster analysis. In integrative cluster 10 (IC10)/basal-like breast cancer, we identify an association between lymphocytic infiltration, determined by an expression score, and retention of wild-type TP53. The expression-derived score agreed with the degree of lymphocytic infiltration assessed by pathologic review, and application of the Nanodissect algorithm was suggestive of this infiltration being primarily of cytotoxic T lymphocytes (CTL). Elevated expression of this CTL signature was associated with longer survival in IC10/Basal-like tumors. These findings identify a new link between the TP53 pathway and the adaptive immune response in estrogen receptor (ER)-negative breast tumors, suggesting a connection between TP53 inactivation and failure of tumor immunosurveillance. IMPLICATIONS: The association of lymphocytic invasion of ER-negative breast tumors with the retention of wild-type TP53 implies a novel protective connection between TP53 function and tumor immunosurveillance.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T Citotóxicos/metabolismo , Proteína p53 Supresora de Tumor/genética , Biomarcadores/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Pérdida de Heterocigocidad , Pronóstico , Receptores de Estrógenos/genética , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA