Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631806

RESUMEN

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Asunto(s)
Genoma Viral , Virus del Mosaico , Virus de Plantas , Animales , Grano Comestible/virología , Genoma Viral/genética , Hemípteros/virología , Virus del Mosaico/genética , Noruega , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Suecia
2.
Arch Virol ; 162(6): 1731-1736, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28204895

RESUMEN

Solanum nodiflorum mottle virus (SNMoV) was isolated from a small-flowered nightshade (Solanum nodiflorum) in Queensland, Australia. It has been included in the genus Sobemovirus based on virion morphology and serological relationships. Here, we report the sequence of the complete genome of SNMoV. Sequence analysis confirmed that SNMoV has the characteristic genome organization of sobemoviruses. Phylogenetic analysis showed that it clusters most closely with velvet tobacco mottle virus (VTMoV), another sobemovirus native to Australia. Their genomes show 56.8 % sequence identity.


Asunto(s)
Genoma Viral , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus ARN/genética , Australia , Secuencia de Bases , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Virus de Plantas/clasificación , Virus de Plantas/aislamiento & purificación , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Viral/genética , Solanum/virología
3.
Virology ; 502: 28-32, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27960111

RESUMEN

Sobemovirus P1 protein, characterized previously as a suppressor of posttranscriptional gene silencing, is required for systemic virus spread and infection in plants. Mutations in the ORF1 initiation codon do not affect viral replication indicating P1 is not necessary for this process. Wild type, recombinant and P1 deletion mutants of Cocksfoot mottle virus and Rice yellow mottle virus were used to infect oat, rice, wheat, barley, Arabidopsis thaliana and Nicotiana benthamiana plants. Wild type RYMV, RYMV without P1 and RYMV with CfMV P1 were detected in inoculated leaves of all tested plant species. We found that RYMV does not need P1 for replication and for local movement neither in host nor non-host species tested in this study. However, it is crucial for successful systemic spread of the virus in its host plant rice. Moreover, adding CfMV P1 into RYMV genome did not help it to overcome restriction to the inoculated leaf.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Virus ARN/fisiología , Replicación Viral , Hordeum/virología , Especificidad del Huésped , Oryza/virología , Hojas de la Planta/virología , Virus de Plantas/genética , Virus ARN/genética , Nicotiana/virología
4.
Viruses ; 7(6): 3076-115, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26083319

RESUMEN

The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.


Asunto(s)
Virus de Plantas/clasificación , Virus de Plantas/genética , Virus ARN/clasificación , Virus ARN/genética , Investigación Biomédica/tendencias , Orden Génico , Sistemas de Lectura Abierta , Filogenia , Virus de Plantas/aislamiento & purificación , Virus de Plantas/fisiología , Virus ARN/aislamiento & purificación , Virus ARN/fisiología , Satélite de ARN/genética , Regiones no Traducidas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/ultraestructura
5.
PLoS One ; 10(2): e0116702, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659154

RESUMEN

ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Interferencia de ARN/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Terminación de la Cadena Péptídica Traduccional/fisiología , Proteínas de Plantas/genética , Nicotiana/genética
6.
Arch Virol ; 158(3): 673-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23111554

RESUMEN

Unlike other sobemoviruses, lucerne transient streak virus (LTSV) and turnip rosette virus (TRoV) have been reported to contain two successive ORF1s (denoted as ORF1a and ORF1b) instead of a single ORF1. Also, their next ORF (ORF2a/2a2b) has been mapped to a region ca. 200 nucleotides downstream from that of other sobemoviruses, leading to the lack of transmembrane segments at the N-termini of P2a/2a2b. In the current study, we resequenced this region for TRoV and LTSV. The hypothetical beginning of ORF1b was mapped as the beginning of ORF2a/2a2b for both TRoV and LTSV. Computional analysis revealed transmembrane segments at the N-termini of the TRoV and LTSV polyproteins.


Asunto(s)
Brassica napus/virología , Genoma Viral , Virus de Plantas/genética , Virus ARN/genética , Secuencia de Aminoácidos , Secuencia de Bases , Genoma Viral/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , ARN Viral/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
7.
BMC Plant Biol ; 12: 81, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672737

RESUMEN

BACKGROUND: The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. RESULTS: Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. CONCLUSIONS: We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Miosinas/genética , Orgánulos/metabolismo , Actinas/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Tamaño de la Célula , Mutagénesis Insercional , Miosinas/metabolismo , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Componentes Aéreos de las Plantas/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , ARN de Planta/genética , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/citología , Semillas/genética , Semillas/crecimiento & desarrollo
8.
J Gen Virol ; 92(Pt 2): 445-52, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21068217

RESUMEN

Sobemoviruses possess a viral genome-linked protein (VPg) attached to the 5' end of viral RNA. VPg is processed from the viral polyprotein. In the current study, Cocksfoot mottle virus (CfMV) and Rice yellow mottle virus (RYMV) VPgs were purified from virions and analysed by mass spectrometry. The cleavage sites in the polyprotein and thereof the termini of VPg were experimentally proven. The lengths of the mature VPgs were determined to be 78 and 79 aa residues, respectively. The amino acid residues covalently linked to RNA in the two VPgs were, surprisingly, not conserved; it is a tyrosine at position 5 of CfMV VPg and serine at position 1 of RYMV VPg. Phosphorylations were identified in CfMV and RYMV VPgs with two positionally similar locations T20/S14 and S71/S72, respectively. RYMV VPg contains an additional phosphorylation site at S41.


Asunto(s)
Virus de Plantas/metabolismo , ARN Viral/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Avena/virología , Evolución Molecular , Regulación Viral de la Expresión Génica/fisiología , Variación Genética , Anotación de Secuencia Molecular , Oryza/virología , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Virus de Plantas/genética , Unión Proteica
9.
J Gen Virol ; 89(Pt 6): 1502-1508, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18474567

RESUMEN

This study investigated the effects of silencing suppressors derived from six different viruses (P1, P19, P25, HcPro, AC2 and 2b), expressed in transgenic Nicotiana tabacum and Nicotiana benthamiana plants, on the infection pattern of tobacco ringspot virus (TRSV) potato calico strain. In N. benthamiana, this virus produced an initial infection with severe systemic symptoms, but the infection was strongly reduced within a few weeks as the plant recovered from the infection. P25 and HcPro silencing suppressors effectively prevented recovery in this host, allowing continuous accumulation of the viral RNA as well as of the virus-specific small interfering RNAs, in the systemically infected leaves. In the P1-, P19-, AC2- or 2b-expressing transgenic N. benthamiana, the recovery was not complete. Susceptibility of N. tabacum to this virus was temperature sensitive. At lower temperatures, up to 25 degrees C, the plants became systemically infected, but at higher temperatures, the infections were limited to the inoculated leaves. In these preventative conditions, all silencing suppressor transgenes (except P25, which was expressed at very low levels) allowed the establishment of systemic infections. Very strong and consistent systemic infections were observed in HcPro- and AC2-expressing plants.


Asunto(s)
Silenciador del Gen , Genes Supresores , Genes Virales/genética , Nepovirus/fisiología , Nicotiana/virología , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Cisteína Endopeptidasas/genética , Datos de Secuencia Molecular , Nepovirus/patogenicidad , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/metabolismo , Temperatura , Nicotiana/genética , Proteínas Virales/metabolismo , Virulencia , Replicación Viral
10.
Mol Plant Microbe Interact ; 21(2): 178-87, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18184062

RESUMEN

RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y (strain N), 2b of Cucumber mosaic virus (strain Kin), and AC2 of African cassava mosaic virus (ACMV). HcPro caused the most severe phenotypes in both Nicotiana spp. AC2 also produced severe effects in N. tabacum but a much milder phenotype in N. benthamiana, although both HcPro and AC2 affected the leaf tissues of the two Nicotiana spp. in similar ways, causing hyperplasia and hypoplasia, respectively. P1-RYMV caused high lethality in the N. benthamiana plants but only mild effects in the N. tabacum plants. Phenotypic alterations produced by the other transgenes were minor in both species. Interestingly, the suppressors had very different effects on crucifer-infecting Tobamovirus (crTMV) infections. AC2 enhanced both spread and brightness of the crTMV-green fluorescent protein (GFP) lesions, whereas 2b and both P1 suppressors enhanced spread but not brightness of these lesions. P19 promoted spread of the infection into new foci within the infiltrated leaf, whereas HcPro and P25 suppressed the spread of crTMV-GFP lesions.


Asunto(s)
Genes Supresores , Genes Virales , Nicotiana/genética , Nicotiana/virología , Virus de Plantas/genética , Interferencia de ARN , Northern Blotting , Regulación de la Expresión Génica de las Plantas , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
11.
Virus Res ; 123(1): 95-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16971015

RESUMEN

The Sobemovirus genome consists of positive sense, single-stranded polycistronic RNA. The 5'-terminal ORF, encoding the protein P1, is its most variable region. Sobemoviral P1 has been described as dispensable for replication but indispensable for systemic infection. The P1 of Rice yellow mottle virus-Nigerian isolate (RYMV-N) is the only RNA silencing suppressor reported for sobemoviruses until now. Using an agrobacterium-mediated transient assay, we demonstrate here that P1 of Cocksfoot mottle virus-Norwegian isolate (CfMV-NO) suppresses RNA silencing in Nicotiana benthamiana and Nicotiana tabacum, two non-host plants. CfMV-NO P1 was able to suppress the initiation and maintenance of silencing. The suppression of systemic silencing was weaker with CfMV-NO P1 than in the case of RYMV-N P1. In the case of suppression at the local level, the reduction in the amount of 25-nucleotide small interfering RNAs (siRNAs) was less pronounced for CfMV-NO P1 than it was when RYMV-N P1 was used. At the same time, we show that CfMV-NO P1 did not bind siRNAs.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/química , Interferencia de ARN , Virus ARN/química , Proteínas Virales/fisiología , Regulación hacia Abajo , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/virología , Virus de Plantas/fisiología , Virus ARN/fisiología , ARN de Planta/genética , Nicotiana
12.
Plant Physiol ; 143(2): 801-11, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17189338

RESUMEN

Movement protein binding 2C (MPB2C) is a plant endogenous microtubule-associated protein previously identified as an interaction partner of tobacco (Nicotiana tabacum) mosaic virus movement protein (TMV-MP). In this work, the role of MPB2C in cell-to-cell transport of TMV-MP, viral spread of TMV, and subcellular localization of TMV-MP was examined. To this end, plants with reduced MPB2C levels were generated by a gene-silencing strategy. Local and systemic spread of TMV and cell-to-cell movement of TMV-MP were unimpaired in MPB2C-silenced plants as compared to nonsilenced plants, indicating that MPB2C is not required for intercellular transport of TMV-MP itself or spread of TMV. However, a clear change in subcellular distribution of TMV-MP characterized by a nearly complete loss of microtubular localization was observed in MPB2C-silenced plants. This result shows that the MPB2C is a central player in determining the complex subcellular localization of TMV-MP, in particular its microtubular accumulation, a phenomenon that has been frequently observed and whose role is still under discussion. Clearly, MPB2C mediated accumulation of TMV-MP at microtubules is not required for intercellular spread but may be a means to withdraw the TMV-MP from the cell-to-cell transport pathway.


Asunto(s)
Microtúbulos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Movimiento Viral en Plantas/metabolismo , Virus del Mosaico del Tabaco/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Datos de Secuencia Molecular , Proteínas de Plantas/genética
13.
Plant Mol Biol ; 61(1-2): 153-63, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16786298

RESUMEN

RNA silencing is a mechanism involved in gene regulation during development and anti-viral defense in plants and animals. Although many viral suppressors of this mechanism have been described up to now, this is not the case for endogenous suppressors. We have identified a novel endogenous suppressor in plants: RNase L inhibitor (RLI) of Arabidopsis thaliana. RLI is a very conserved protein among eukaryotes and archaea. It was first known as component of the interferon-induced mammalian 2'-5' oligoadenylate (2-5A) anti-viral pathway. This protein is in several organisms responsible for essential functions, which are not related to the 2-5A pathway, like ribosome biogenesis and translation initiation. Arabidopsis has two RLI paralogs. We have described in detail the expression pattern of one of these paralogs (AtRLI2), which is ubiquitously expressed in all plant organs during different developmental stages. Infiltrating Nicotiana benthamiana green fluorescent protein (GFP)-transgenic line with Agrobacterium strains harboring GFP and AtRLI2, we proved that AtRLI2 suppresses silencing at the local and at the systemic level, reducing drastically the amount of GFP small interfering RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Interferencia de ARN , Transportadoras de Casetes de Unión a ATP , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes/análisis , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/metabolismo , Nicotiana/anatomía & histología , Nicotiana/genética , Transgenes
14.
J Gen Virol ; 81(Pt 11): 2783-2789, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11038392

RESUMEN

The polyprotein of Cocksfoot mottle virus (CfMV; genus SOBEMOVIRUS:) is translated from two overlapping open reading frames (ORFs) 2a and 2b by a -1 ribosomal frameshifting mechanism. In this study, a 12 kDa protein was purified from viral RNA-derived samples that appears to correspond to the CfMV genome-linked protein (VPg). According to the determined N-terminal amino acid sequence, the VPg domain is located between the serine proteinase and replicase motifs and the N terminus of VPg is cleaved from the polyprotein between glutamic acid and asparagine residues. Western blot analysis of infected plant material showed that the polyprotein is processed at several additional sites. An antiserum against the ORF 2a product recognized six distinct proteins, whereas, of these, the VPg antiserum clearly recognized only a 24 kDa protein. This indicates that the fully processed 12 kDa VPg detected in viral RNA-derived samples is a minor product in infected plants. An antiserum against the ORF 2b product recognized a 58 kDa protein, which indicates that the fully processed replicase is entirely or almost entirely encoded by ORF 2b. The origin of the detected cleavage products and a proposed polyprotein processing model are discussed.


Asunto(s)
Virus de Plantas/metabolismo , Proteínas Virales/metabolismo , Mapeo Cromosómico , Genoma Viral , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA