Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Obesity (Silver Spring) ; 32(7): 1245-1256, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757229

RESUMEN

OBJECTIVE: The objective of this study was to explore the effects of a green Mediterranean (green-MED) diet, which is high in dietary polyphenols and green plant-based protein and low in red/processed meat, on cardiovascular disease and inflammation-related circulating proteins and their associations with cardiometabolic risk parameters. METHODS: In the 18-month weight loss trial Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS), 294 participants with abdominal obesity were randomized to basic healthy dietary guidelines, Mediterranean (MED), or green-MED diets. Both isocaloric MED diet groups consumed walnuts (28 g/day), and the green-MED diet group also consumed green tea (3-4 cups/day) and green shakes (Mankai plant shake, 500 mL/day) and avoided red/processed meat. Proteome panels were measured at three time points using Olink CVDII. RESULTS: At baseline, a dominant protein cluster was significantly related to higher phenotypic cardiometabolic risk parameters, with the strongest associations attributed to magnetic resonance imaging-assessed visceral adiposity (false discovery rate of 5%). Overall, after 6 months of intervention, both the MED and green-MED diets induced improvements in cardiovascular disease and proinflammatory risk proteins (p < 0.05, vs. healthy dietary guidelines), with the green-MED diet leading to more pronounced beneficial changes, largely driven by dominant proinflammatory proteins (IL-1 receptor antagonist protein, IL-16, IL-18, thrombospondin-2, leptin, prostasin, galectin-9, and fibroblast growth factor 21; adjusted for age, sex, and weight loss; p < 0.05). After 18 months, proteomics cluster changes presented the strongest correlations with visceral adiposity reduction. CONCLUSIONS: Proteomics clusters may enhance our understanding of the favorable effect of a green-MED diet that is enriched with polyphenols and low in red/processed meat on visceral adiposity and cardiometabolic risk.


Asunto(s)
Dieta Mediterránea , Obesidad Abdominal , Proteoma , Humanos , Femenino , Masculino , Persona de Mediana Edad , Obesidad Abdominal/dietoterapia , Grasa Intraabdominal/metabolismo , Pérdida de Peso , Adiposidad , Enfermedades Cardiovasculares/prevención & control , Polifenoles/administración & dosificación , Polifenoles/farmacología , Adulto , Factores de Riesgo Cardiometabólico , Inflamación ,
2.
Hepatology ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537153

RESUMEN

BACKGROUND AND AIMS: We demonstrated in the randomized 18-month DIRECT PLUS trial (n = 294) that a Mediterranean (MED) diet, supplemented with polyphenol-rich Mankai duckweed, green tea, and walnuts and restricted in red/processed meat, caused substantial intrahepatic fat (IHF%) loss compared with 2 other healthy diets, reducing NAFLD by half, regardless of similar weight loss. Here, we investigated the baseline proteomic profile associated with IHF% and the changes in proteomics associated with IHF% changes induced by lifestyle intervention. APPROACH AND RESULTS: We calculated IHF% by proton magnetic resonance spectroscopy (normal IHF% <5% and abnormal IHF% ≥5%). We assayed baseline and 18-month samples for 95 proteomic biomarkers.Participants (age = 51.3 ± 10.8 y; 89% men; and body mass index = 31.3 ± 3.9 kg/m 2 ) had an 89.8% 18-month retention rate; 83% had eligible follow-up proteomics measurements, and 78% had follow-up proton magnetic resonance spectroscopy. At baseline, 39 candidate proteins were significantly associated with IHF% (false discovery rate <0.05), mostly related to immune function pathways (eg, hydroxyacid oxidase 1). An IHF% prediction based on the DIRECT PLUS by combined model ( R2 = 0.47, root mean square error = 1.05) successfully predicted IHF% ( R2 = 0.53) during testing and was stronger than separately inputting proteins/traditional markers ( R2 = 0.43/0.44). The 18-month lifestyle intervention induced changes in 18 of the 39 candidate proteins, which were significantly associated with IHF% change, with proteins related to metabolism, extracellular matrix remodeling, and immune function pathways. Thrombospondin-2 protein change was higher in the green-MED compared to the MED group, beyond weight and IHF% loss ( p = 0.01). Protein principal component analysis revealed differences in the third principal component time distinct interactions across abnormal/normal IHF% trajectory combinations; p < 0.05 for all). CONCLUSIONS: Our findings suggest novel proteomic signatures that may indicate MRI-assessed IHF state and changes during lifestyle intervention. Specifically, carbonic anhydrase 5A, hydroxyacid oxidase 1, and thrombospondin-2 protein changes are independently associated with IHF% change, and thrombospondin-2 protein change is greater in the green-MED/high polyphenols diet.

3.
Eur Heart J ; 45(5): 379-388, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939798

RESUMEN

BACKGROUND AND AIMS: Amiodarone-related interstitial lung disease (ILD) is the most severe adverse effect of amiodarone treatment. Most data on amiodarone-related ILD are derived from periods when amiodarone was given at higher doses than currently used. METHODS: A nationwide population-based study was conducted among patients with incident atrial fibrillation (AF) between 1 December 1999 and 31 December 31 2021. Amiodarone-exposed patients were matched 1:1 with controls unexposed to amiodarone based on age, sex, ethnicity, and AF diagnosis duration. The final patient cohort included only matched pairs where amiodarone therapy was consistent throughout follow-up. Directed acyclic graphs and inverse probability treatment weighting (IPTW) modelling were used. Patients with either prior ILD or primary lung cancer (PLC) were excluded. The primary outcome was the incidence of any ILD. Secondary endpoints were death and PLC. RESULTS: The final cohort included 6039 amiodarone-exposed patients who were matched with unexposed controls. The median age was 73.3 years, and 51.6% were women. After a mean follow-up of 4.2 years, ILD occurred in 242 (2.0%) patients. After IPTW, amiodarone exposure was not significantly associated with ILD [hazard ratio (HR): 1.45, 95% confidence interval (CI): 0.97, 2.44, P = 0.09]. There was a trivial higher relative risk of ILD among amiodarone-exposed patients between Years 2 and 8 of follow-up [maximal risk ratio (RR): 1.019]. Primary lung cancer occurred in 97 (0.8%) patients. After IPTW, amiodarone was not associated with PLC (HR: 1.18, 95% CI: 0.76, 2.08, P = 0.53). All-cause death occurred in 2185 (18.1%) patients. After IPTW, amiodarone was associated with reduced mortality risk (HR: 0.65, 95% CI: 0.60, 0.72, P < 0.001). The results were consistent across a variety of sensitivity analyses. CONCLUSION: In a contemporary AF population, low-dose amiodarone was associated with a trend towards increased risk of ILD (15%-45%) but a clinically negligible change in absolute risk (maximum of 1.8%), no increased risk of PLC, and a lower risk of all-cause mortality.


Asunto(s)
Amiodarona , Fibrilación Atrial , Enfermedades Pulmonares Intersticiales , Neoplasias Pulmonares , Humanos , Femenino , Anciano , Masculino , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/epidemiología , Antiarrítmicos/efectos adversos , Israel/epidemiología , Neoplasias Pulmonares/tratamiento farmacológico
4.
Front Endocrinol (Lausanne) ; 14: 1243910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034010

RESUMEN

Background: Fasting morning cortisol (FMC) stress hormone levels, are suggested to reflect increased cardiometabolic risk. Acute response to weight loss diet could elevate FMC. Richer Polyphenols and lower carbohydrates diets could favor FMC levels. We aimed to explore the effect of long-term high polyphenol Mediterranean diet (green-MED) on FMC and its relation to metabolic health. Methods: We randomized 294 participants into one of three dietary interventions for 18-months: healthy dietary guidelines (HDG), Mediterranean (MED) diet, and Green-MED diet. Both MED diets were similarly hypocaloric and lower in carbohydrates and included walnuts (28 g/day). The high-polyphenols/low-meat Green-MED group further included green tea (3-4 cups/day) and a Wolffia-globosa Mankai plant 1-cup green shakeFMC was obtained between 07:00-07:30AM at baseline, six, and eighteen-months. Results: Participants (age=51.1years, 88% men) had a mean BMI of 31.3kg/m2, FMC=304.07nmol\L, and glycated-hemoglobin-A1c (HbA1c)=5.5%; 11% had type 2 diabetes and 38% were prediabetes. Baseline FMC was higher among men (308.6 ± 90.05nmol\L) than women (269.6± 83.9nmol\L;p=0.02). Higher baseline FMC was directly associated with age, dysglycemia, MRI-assessed visceral adiposity, fasting plasma glucose (FPG), high-sensitivity C-reactive-protein (hsCRP), testosterone, Progesterone and TSH levels (p ≤ 0.05 for all). The 18-month retention was 89%. After 6 months, there were no significant changes in FMC among all intervention groups. However, after 18-months, both MED groups significantly reduced FMC (MED=-1.6%[-21.45 nmol/L]; Green-MED=-1.8%[-26.67 nmol/L]; p<0.05 vs. baseline), as opposed to HDG dieters (+4%[-12 nmol/L], p=0.28 vs. baseline), whereas Green-MED diet FMC change was significant as compared to HDG diet group (p=0.048 multivariable models). Overall, 18-month decrease in FMC levels was associated with favorable changes in FPG, HbA1c, hsCRP, TSH, testosterone and MRI-assessed hepatosteatosis, and with unfavorable changes of HDLc (p<0.05 for all, weight loss adjusted, multivariable models). Conclusion: Long-term adherence to MED diets, and mainly green-MED/high polyphenols diet, may lower FMC, stress hormone, levels,. Lifestyle-induced FMC decrease may have potential benefits related to cardiometabolic health, irrespective of weight loss. Clinical trial registration: ClinicalTrials.gov, identifier NCT03020186.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Dieta Mediterránea , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteína C-Reactiva , Ayuno , Hemoglobina Glucada , Hidrocortisona , Testosterona , Tirotropina , Pérdida de Peso/fisiología
5.
Gut Microbes ; 15(2): 2264457, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37796016

RESUMEN

We previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0-6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = -8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m's fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8-14 m weight regain (aFMT = -0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8-14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT03020186.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Persona de Mediana Edad , Heces , Pérdida de Peso , Aumento de Peso
6.
BMC Med ; 21(1): 364, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37743489

RESUMEN

BACKGROUND: Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. METHODS: We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3-4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). RESULTS: Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e - 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = - 0.41, p = 0.004 and beta = - 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = - 1.8; p = 0.061) and green tea (beta = - 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). CONCLUSIONS: This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03020186.


Asunto(s)
Dieta Mediterránea , Microbioma Gastrointestinal , Humanos , Adulto , Persona de Mediana Edad , Metilación de ADN , Envejecimiento/genética , Etnicidad
7.
Metabolism ; 145: 155594, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236302

RESUMEN

BACKGROUND: The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. METHODS: Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. RESULTS: A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10-3) and highlighted one module including the KIR3DS1 locus, being negatively associated with the polyphenol changes (e.g. P < 1 × 10-4), but positively associated with the MRI-assessed superficial subcutaneous adipose area-, weight- and waist circumference- 18-month change (all P < 0.05). Among others, this module included the DMR gene Cystathionine Beta-Synthase, playing a major role in homocysteine reduction. CONCLUSIONS: The green-MED high polyphenol diet, rich in green tea and Mankai, renders a high capacity to regulate an individual's epigenome. Our findings suggest epigenetic key drivers such as folate and green diet marker to mediate this capacity and indicate a direct effect of dietary polyphenols on the one­carbon metabolism.


Asunto(s)
Dieta Mediterránea , Humanos , Polifenoles/farmacología , Dieta , Obesidad , , Epigénesis Genética
8.
Elife ; 122023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022140

RESUMEN

Background: Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods: In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results: To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months' attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions: Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding: The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai).


Obesity is linked with the brain aging faster than would normally be expected. Researchers are able to capture this process by calculating a person's 'brain age' ­ how old their brain appears on detailed scans, regardless of chronological age. This approach also helps to monitor how certain factors, such as lifestyle, can influence brain aging over relatively short time scales. It is not clear whether lifestyle interventions that promote weight loss can help to slow obesity-driven brain aging. To answer this question, Levakov et al. studied 102 individuals who met the criteria for obesity and took part in a lifestyle intervention aimed to improve diet and physical activity levels over 18 months. The participants received a brain scan at the beginning and the end of the program; additional tests and measurements were also conducted at these times to capture other biological processes impacted by obesity, such as liver health. Levakov et al. used the brain scans taken at the start and end of the study to examine the impact of the lifestyle intervention on the aging trajectory. The results revealed that a reduction in body weight of 1% led to the participants' brain age being nearly 9 months younger than the expected brain age after 18 months. This attenuated aging was associated with changes in other biological measures, such as decreased liver fat and liver enzymes. Increases in liver fat and production of specific liver enzymes were previously shown to negatively impact brain health in Alzheimer's disease. Finally, examining more closely the food consumption reports completed by participants showed that reduced consumption of processed food, sweets and beverages were linked to attenuated brain aging. The findings show that lifestyle interventions which promote weight loss can have a beneficial impact on the aging trajectory of the brain observed with obesity. The next steps will include determining whether slowing down obesity-driven brain aging results in better clinical outcomes for patients. In addition, the work by Levakov et al. demonstrates a potential strategy to evaluate the success of lifestyle changes on brain health. With global rates of obesity rising, identifying interventions that have a positive impact on brain health could have important clinical, educational and social impacts.


Asunto(s)
Ejercicio Físico , Obesidad , Humanos , Lactante , Estudios Retrospectivos , Ejercicio Físico/fisiología , Estilo de Vida , Pérdida de Peso , Encéfalo/diagnóstico por imagen
9.
Bone ; 171: 116727, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36898571

RESUMEN

BACKGROUND: Increased levels of bone marrow adipose tissue (BMAT) are negatively associated with skeletal health and hematopoiesis. BMAT is known to increase with age; however, the effect of long-term weight loss on BMAT is still unknown. OBJECTIVE: In this study, we examined BMAT response to lifestyle-induced weight loss in 138 participants (mean age 48 y; mean body mass index 31 kg/m2), who participated in the CENTRAL-MRI trial. METHODS: Participants were randomized for dietary intervention of low-fat or low-carb, with or without physical activity. Magnetic resonance imaging (MRI) was used to quantify BMAT and other fat depots at baseline, six and eighteen months of intervention. Blood biomarkers were also measured at the same time points. RESULTS: At baseline, the L3 vertebrae BMAT is positively associated with age, HDL cholesterol, HbA1c and adiponectin; but not with other fat depots or other metabolic markers tested. Following six months of dietary intervention, the L3 BMAT declined by an average of 3.1 %, followed by a return to baseline after eighteen months (p < 0.001 and p = 0.189 compared to baseline, respectively). The decrease of BMAT during the first six months was associated with a decrease in waist circumference, cholesterol, proximal-femur BMAT, and superficial subcutaneous adipose tissue (SAT), as well as with younger age. Nevertheless, BMAT changes did not correlate with changes in other fat depots. CONCLUSIONS: We conclude that physiological weight loss can transiently reduce BMAT in adults, and this effect is more prominent in younger adults. Our findings suggest that BMAT storage and dynamics are largely independent of other fat depots or cardio-metabolic risk markers, highlighting its unique functions.


Asunto(s)
Tejido Adiposo , Médula Ósea , Adulto , Humanos , Persona de Mediana Edad , Médula Ósea/patología , Tejido Adiposo/metabolismo , Vértebras Lumbares , Imagen por Resonancia Magnética , Pérdida de Peso
10.
J Clin Med ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36498590

RESUMEN

Objective: To assess the impact of changing the reporting threshold policy of positive urine cultures in hospitalized non-pregnant adults from 104 CFU/mL to 105 CFU/mL on the unwarranted use of antibiotics and patient safety. Setting: A 1100-bed tertiary-care hospital in southern Israel. Methods: As an intervention, we changed urine culture reporting policy for patients admitted to general medical wards. If culture grew ≥105 CFU/mL, it was reported with pathogen and antibiotic susceptibility data, if it grew ≤104 CFU/mL, it was reported as "low growth". The withheld information was available upon request. We retrospectively collected data on all patients in a four-month period following the intervention and report using STROBE guidelines. Results: 7808 patients were admitted, in whom 3523 urine cultures were obtained. A total of 496 grew a pathogen, 51 were excluded (candida spp. positive, history of urinary surgery, obtained from catheter). A total of 300 were reported as positive and 145 were reported as low-growth. A higher rate of patients in the low-growth group were not treated with antibiotics 45/145(31%) vs. 56/300(18.7%) in the positive group p = 0.015 and the antibiotic duration of treatment was shorter by day 5 (IQR 0.9) vs. 6 (IQR 0.9) p = 0.015. No between-group difference was observed in recurrent admission rates, pyelonephritis within 30 days, bacteremia or all-cause mortality. Conclusions: Changing the reporting threshold of positive urine culture results from 104 CFU/mL to 105 CFU/mL in hospitalized patients reduced the number of patients who were unnecessarily treated for asymptomatic bacteriuria without negatively impacting patient safety. We urge microbiological laboratories to consider this change in threshold as part of an antimicrobial stewardship program.

11.
Healthcare (Basel) ; 10(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36553954

RESUMEN

The obesity epidemic has nearly tripled worldwide over the past five decades and has become a significant risk factor for noncommunicable diseases [...].

12.
BMC Med ; 20(1): 327, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175997

RESUMEN

BACKGROUND: Mediterranean (MED) diet is a rich source of polyphenols, which benefit adiposity by several mechanisms. We explored the effect of the green-MED diet, twice fortified in dietary polyphenols and lower in red/processed meat, on visceral adipose tissue (VAT). METHODS: In the 18-month Dietary Intervention Randomized Controlled Trial PoLyphenols UnproceSsed (DIRECT-PLUS) weight-loss trial, 294 participants were randomized to (A) healthy dietary guidelines (HDG), (B) MED, or (C) green-MED diets, all combined with physical activity. Both isocaloric MED groups consumed 28 g/day of walnuts (+ 440 mg/day polyphenols). The green-MED group further consumed green tea (3-4 cups/day) and Wolffia globosa (duckweed strain) plant green shake (100 g frozen cubes/day) (+ 800mg/day polyphenols) and reduced red meat intake. We used magnetic resonance imaging (MRI) to quantify the abdominal adipose tissues. RESULTS: Participants (age = 51 years; 88% men; body mass index = 31.2 kg/m2; 29% VAT) had an 89.8% retention rate and 79.3% completed eligible MRIs. While both MED diets reached similar moderate weight (MED: - 2.7%, green-MED: - 3.9%) and waist circumference (MED: - 4.7%, green-MED: - 5.7%) loss, the green-MED dieters doubled the VAT loss (HDG: - 4.2%, MED: - 6.0%, green-MED: - 14.1%; p < 0.05, independent of age, sex, waist circumference, or weight loss). Higher dietary consumption of green tea, walnuts, and Wolffia globosa; lower red meat intake; higher total plasma polyphenols (mainly hippuric acid), and elevated urine urolithin A polyphenol were significantly related to greater VAT loss (p < 0.05, multivariate models). CONCLUSIONS: A green-MED diet, enriched with plant-based polyphenols and lower in red/processed meat, may be a potent intervention to promote visceral adiposity regression. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03020186.


Asunto(s)
Dieta Mediterránea , Adiposidad , Dieta , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad Abdominal , Polifenoles , , Pérdida de Peso
13.
Am J Cardiovasc Drugs ; 22(6): 677-683, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35869410

RESUMEN

INTRODUCTION: Secondary prevention of cardiovascular events among patients with diagnosed cardiovascular disease and high ischemic risk poses a significant challenge in clinical practice. The combinations of aspirin with low-dose (LD) ticagrelor or LD rivaroxaban have shown superiority in preventing major adverse cardiovascular events (MACE) compared with aspirin treatment alone. The comparative value for money of these two regimens remains unexplored. METHODS: We analyzed each regimen's annual cost needed to treat (CNT) by multiplying the annualized number needed to treat (aNNT) by the annual cost of each drug. The aNNTs were based on outcome data from PEGASUS TIMI-54 and COMPASS trials. Scenario analyses were performed to overcome variances in terms of population risk. Costs were calculated as 75% of US National Average Drug Acquisition Cost (NADAC), extracted in January 2022. The primary outcome was defined as CNT to prevent one MACE across the two regimens. Secondary value analysis was performed for myocardial infarction (MI), stroke, and cardiovascular death as separate outcomes. RESULTS: The aNNTs to prevent MACE with LD ticagrelor and with LD rivaroxaban were 229 [95% confidence interval (CI) 141-734] and 147 (95% CI 104-252), respectively. At an annual cost of US$3726 versus US$4533, the corresponding CNTs were US$853,254 (95% CI 525,366-2,734,884) with LD ticagrelor and US$666,351 (95% CI 471,432-1,142,316) with LD rivaroxaban. CONCLUSION: Combining aspirin with LD rivaroxaban provides better value for money than with LD ticagrelor for secondary prevention of MACE.


Asunto(s)
Aspirina , Infarto del Miocardio , Humanos , Ticagrelor/uso terapéutico , Aspirina/uso terapéutico , Rivaroxabán/uso terapéutico , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Adenosina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Prevención Secundaria , Quimioterapia Combinada , Resultado del Tratamiento , Inhibidores de Agregación Plaquetaria/uso terapéutico
14.
Genome Med ; 14(1): 29, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35264213

RESUMEN

BACKGROUND: Previous studies have linked the Mediterranean diet (MED) with improved cardiometabolic health, showing preliminary evidence for a mediating role of the gut microbiome. We recently suggested the Green-Mediterranean (Green-MED) diet as an improved version of the healthy MED diet, with increased consumption of plant-based foods and reduced meat intake. Here, we investigated the effects of MED interventions on the gut microbiota and cardiometabolic markers, and the interplay between the two, during the initial weight loss phase of the DIRECT-PLUS trial. METHODS: In the DIRECT-PLUS study, 294 participants with abdominal obesity/dyslipidemia were prospectively randomized to one of three intervention groups: healthy dietary guidelines (standard science-based nutritional counseling), MED, and Green-MED. Both isocaloric MED and Green-MED groups were supplemented with 28g/day walnuts. The Green-MED group was further provided with daily polyphenol-rich green tea and Mankai aquatic plant (new plant introduced to a western population). Gut microbiota was profiled by 16S rRNA for all stool samples and shotgun sequencing for a select subset of samples. RESULTS: Both MED diets induced substantial changes in the community structure of the gut microbiome, with the Green-MED diet leading to more prominent compositional changes, largely driven by the low abundant, "non-core," microorganisms. The Green-MED diet was associated with specific microbial changes, including enrichments in the genus Prevotella and enzymatic functions involved in branched-chain amino acid degradation, and reductions in the genus Bifidobacterium and enzymatic functions responsible for branched-chain amino acid biosynthesis. The MED and Green-MED diets were also associated with stepwise beneficial changes in body weight and cardiometabolic biomarkers, concomitantly with the increased plant intake and reduced meat intake. Furthermore, while the level of adherence to the Green-MED diet and its specific green dietary components was associated with the magnitude of changes in microbiome composition, changes in gut microbial features appeared to mediate the association between adherence to the Green-MED and body weight and cardiometabolic risk reduction. CONCLUSIONS: Our findings support a mediating role of the gut microbiome in the beneficial effects of the Green-MED diet enriched with Mankai and green tea on cardiometabolic risk factors. TRIAL REGISTRATION: The study was registered on ClinicalTrial.gov ( NCT03020186 ) on January 13, 2017.


Asunto(s)
Enfermedades Cardiovasculares , Dieta Mediterránea , Microbioma Gastrointestinal , Aminoácidos de Cadena Ramificada , Biomarcadores , Enfermedades Cardiovasculares/prevención & control , Dieta , Humanos , ARN Ribosómico 16S , , Pérdida de Peso
15.
Am J Clin Nutr ; 115(5): 1270-1281, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35021194

RESUMEN

BACKGROUND: The effect of diet on age-related brain atrophy is largely unproven. OBJECTIVES: We aimed to explore the effect of a Mediterranean diet (MED) higher in polyphenols and lower in red/processed meat (Green-MED diet) on age-related brain atrophy. METHODS: This 18-mo clinical trial longitudinally measured brain structure volumes by MRI using hippocampal occupancy score (HOC) and lateral ventricle volume (LVV) expansion score as neurodegeneration markers. Abdominally obese/dyslipidemic participants were randomly assigned to follow 1) healthy dietary guidelines (HDG), 2) MED, or 3) Green-MED diet. All subjects received free gym memberships and physical activity guidance. Both MED groups consumed 28 g walnuts/d (+440 mg/d polyphenols). The Green-MED group consumed green tea (3-4 cups/d) and Mankai (Wolffia-globosa strain, 100 g frozen cubes/d) green shake (+800 mg/d polyphenols). RESULTS: Among 284 participants (88% men; mean age: 51 y; BMI: 31.2 kg/m2; APOE-ε4 genotype = 15.7%), 224 (79%) completed the trial with eligible whole-brain MRIs. The pallidum (-4.2%), third ventricle (+3.9%), and LVV (+2.2%) disclosed the largest volume changes. Compared with younger participants, atrophy was accelerated among those ≥50 y old (HOC change: -1.0% ± 1.4% compared with -0.06% ± 1.1%; 95% CI: 0.6%, 1.3%; P < 0.001; LVV change: 3.2% ± 4.5% compared with 1.3% ± 4.1%; 95% CI: -3.1%, -0.8%; P = 0.001). In subjects ≥ 50 y old, HOC decline and LVV expansion were attenuated in both MED groups, with the best outcomes among Green-MED diet participants, as compared with HDG (HOC: -0.8% ± 1.6% compared with -1.3% ± 1.4%; 95% CI: -1.5%, -0.02%; P = 0.042; LVV: 2.3% ± 4.7% compared with 4.3% ± 4.5%; 95% CI: 0.3%, 5.2%; P = 0.021). Similar patterns were observed among younger subjects. Improved insulin sensitivity over the trial was the parameter most strongly associated with brain atrophy attenuation (P < 0.05). Greater Mankai, green tea, and walnut intake and less red and processed meat were significantly and independently associated with reduced HOC decline (P < 0.05). Elevated urinary concentrations of the polyphenols urolithin-A (r = 0.24; P = 0.013) and tyrosol (r = 0.26; P = 0.007) were significantly associated with lower HOC decline. CONCLUSIONS: A Green-MED (high-polyphenol) diet, rich in Mankai, green tea, and walnuts and low in red/processed meat, is potentially neuroprotective for age-related brain atrophy.This trial was registered at clinicaltrials.gov as NCT03020186.


Asunto(s)
Dieta Mediterránea , Juglans , Atrofia , Encéfalo/diagnóstico por imagen , Ejercicio Físico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polifenoles/farmacología ,
17.
Nutrients ; 13(6)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070816

RESUMEN

BACKGROUND: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa 'Mankai', a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. METHODS: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. RESULTS: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. CONCLUSIONS: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.


Asunto(s)
Araceae/metabolismo , Araceae/microbiología , Dieta Mediterránea , Microbioma Gastrointestinal/efectos de los fármacos , Metabolómica/métodos , Polifenoles/sangre , Polifenoles/orina , Adulto , Humanos , Israel , Juglans/metabolismo , Juglans/microbiología , Espectrometría de Masas , Valor Nutritivo , Polifenoles/administración & dosificación , Té/metabolismo , Té/microbiología
18.
Gut ; 70(11): 2085-2095, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33461965

RESUMEN

OBJECTIVE: To examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red/processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (IHF) loss. DESIGN: For the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 participants with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and green-MED weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3-4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS). RESULTS: Participants (age=51 years; 88% men; body mass index=31.3 kg/m2; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18-month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups. Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (-38.9% proportionally), as compared with MED (-19.6% proportionally; p=0.035 weight loss adjusted) and HDG (-12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2-5-dihydroxybenzoic-acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all). CONCLUSION: The new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half. TRIAL REGISTRATION NUMBER: NCT03020186.


Asunto(s)
Araceae , Dieta Mediterránea , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Polifenoles/administración & dosificación , , Dieta Reductora , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Gastroenterology ; 160(1): 158-173.e10, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860791

RESUMEN

BACKGROUND & AIMS: We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight-loss phase. METHODS: In the DIRECT PLUS (Dietary Intervention Randomized Controlled Trial Polyphenols-Unprocessed) weight-loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to healthy dietary guidelines, Mediterranean diet, and green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both isocaloric Mediterranean groups consumed 28 g/d walnuts (+440 mg/d polyphenols provided). The green-Mediterranean dieters also consumed green tea (3-4 cups/d) and a Wolffia globosa (Mankai strain, 100 g/d) green shake (+800 mg/d polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque, and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight-regain phase (months 6-14). Secondary outcomes were gastrointestinal symptoms, waist circumference, glycemic status, and changes in the gut microbiome, as measured by metagenomic sequencing and 16s ribosomal RNA. We validated the results in a parallel in vivo study of mice specifically fed with Mankai compared with control chow diet. RESULTS: Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules during the transplantation period. No aFMT-related adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6-14 (aFMT, 30.4% vs placebo, 40.6%; P = .28), aFMT significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P = .02), but not in the dietary guidelines (P = .57) or Mediterranean diet (P = .64) groups (P for the interaction = .03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89 cm vs placebo, 5.05 cm; P = .01) and insulin rebound (aFMT, -1.46 ± 3.6 µIU/mL vs placebo, 1.64 ± 4.7 µIU/mL; P = .04) in the green-Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction = .04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight-loss phase, and to prompt preservation of weight-loss-associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) after the aFMT. In mice, Mankai-modulated aFMT in the weight-loss phase compared with control diet aFMT, significantly prevented weight regain and resulted in better glucose tolerance during a high-fat diet-induced regain phase (all, P < .05). CONCLUSIONS: Autologous FMT, collected during the weight-loss phase and administrated in the regain phase, might preserve weight loss and glycemic control, and is associated with specific microbiome signatures. A high-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure. ClinicalTrials.gov number, NCT03020186.


Asunto(s)
Trasplante de Microbiota Fecal , Obesidad/dietoterapia , Aumento de Peso , Adulto , Animales , Dieta Mediterránea , Modelos Animales de Enfermedad , Ejercicio Físico , Femenino , Humanos , Israel , Estilo de Vida , Masculino , Ratones , Persona de Mediana Edad , Circunferencia de la Cintura , Pérdida de Peso
20.
Neuroimage ; 224: 117403, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979521

RESUMEN

Lifestyle dietary interventions are an essential practice in treating obesity, hence neural factors that may assist in predicting individual treatment success are of great significance. Here, in a prospective, open-label, three arms study, we examined the correlation between brain resting-state functional connectivity measured at baseline and weight loss following 6 months of lifestyle intervention in 92 overweight participants. We report a robust subnetwork composed mainly of sensory and motor cortical regions, whose edges correlated with future weight loss. This effect was found regardless of intervention group. Importantly, this main finding was further corroborated using a stringent connectivity-based prediction model assessed with cross-validation thus attesting to its robustness. The engagement of senso-motor regions in this subnetwork is consistent with the over-sensitivity to food cues theory of weight regulation. Finally, we tested an additional hypothesis regarding the role of brain-gastric interaction in this subnetwork, considering recent findings of a cortical network synchronized with gastric activity. Accordingly, we found a significant spatial overlap with the subnetwork reported in the present study. Moreover, power in the gastric basal electric frequency within our reported subnetwork negatively correlated with future weight loss. This finding was specific to the weight loss related subnetwork and to the gastric basal frequency. These findings should be further corroborated by combining direct recordings of gastric activity in future studies. Taken together, these intriguing results may have important implications for our understanding of the etiology of obesity and the mechanism of response to dietary intervention.


Asunto(s)
Encéfalo/diagnóstico por imagen , Dieta Mediterránea , Obesidad/dietoterapia , Corteza Sensoriomotora/diagnóstico por imagen , Pérdida de Peso , Adulto , Encéfalo/fisiopatología , Reglas de Decisión Clínica , Conectoma , Ejercicio Físico , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Obesidad/fisiopatología , Sobrepeso/dietoterapia , Sobrepeso/fisiopatología , Polifenoles , Corteza Sensoriomotora/fisiopatología , Estómago/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA