Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 19(7): e0307181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046973

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.


Asunto(s)
Lactobacillus plantarum , Limosilactobacillus fermentum , Limosilactobacillus reuteri , Probióticos , Ácido Úrico , Humanos , Probióticos/administración & dosificación , Lactobacillus plantarum/fisiología , Masculino , Ácido Úrico/sangre , Ácido Úrico/metabolismo , Femenino , Proyectos Piloto , Persona de Mediana Edad , Método Doble Ciego , Hígado/metabolismo , Adulto , Microbioma Gastrointestinal/efectos de los fármacos , Células Hep G2 , Células CACO-2 , Aspartato Aminotransferasas/sangre , Heces/microbiología , Alanina Transaminasa/sangre
2.
Am J Cancer Res ; 14(1): 169-181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323273

RESUMEN

One-carbon metabolism plays a crucial role in tumorigenesis as it supplies the one-carbon units necessary for nucleotide synthesis, epigenetic regulation, and redox metabolism, ensuring the rapid proliferation of cancer cells. However, their roles in prostate cancer progression remain poorly understood. In this study, we investigated the association between genetic variants in the one-carbon metabolism pathway and clinical outcomes in patients receiving androgen deprivation therapy for prostate cancer. The associations of 130 single-nucleotide polymorphisms located within 14 genes involved in the one-carbon metabolism pathway with cancer-specific survival (CSS), overall survival, and progression-free survival were assessed using Cox regression in 630 patients with prostate cancer. Subsequently, functional studies were performed using prostate cancer cell lines. After adjusting for covariates and multiple testing, MTHFD1L rs2073190 was found to be significantly associated with CSS (P = 0.000184). Further pooled analysis of multiple datasets demonstrated that MTHFD1L was upregulated in prostate cancer and increased MTHFD1L expression was positively correlated with tumor aggressiveness and poor patient prognosis. Functionally, MTHFD1L knockdown suppressed prostate cancer cell proliferation and colony formation. RNA sequencing and pathway analysis revealed that differentially expressed genes were predominantly enriched in the cell cycle pathway. In conclusion, genetic variants in MTHFD1L of one-carbon metabolism may serve as promising predictors, and our findings offer valuable insights into the underlying genetic mechanisms of prostate cancer progression.

3.
J Proteome Res ; 23(1): 301-315, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064546

RESUMEN

Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondrial dynamics. However, its specific effects beyond Drp1 inhibition remain to be confirmed. In this study, we employed integrative proteomics and phosphoproteomics to delve into the molecular responses induced by Mdivi-1 in SK-N-BE(2)C cells. A total of 3070 proteins and 1945 phosphorylation sites were identified, with 880 of them represented as phosphoproteins. Among these, 266 proteins and 97 phosphorylation sites were found to be sensitive to the Mdivi-1 treatment. Functional enrichment analysis unveiled their involvement in serine biosynthesis and extrinsic apoptotic signaling pathways. Through targeted metabolomics, we observed that Mdivi-1 enhanced intracellular serine biosynthesis while reducing the production of C24:1-ceramide. Within these regulated phosphoproteins, dynamic dephosphorylation of proteasome subunit alpha type 3 serine 250 (PSMA3-S250) occurred after Mdivi-1 treatment. Further site-directed mutagenesis experiments revealed that the dephosphorylation-deficient mutant PSMA3-S250A exhibited a decreased cell survival. This research confirms that Mdivi-1's inhibition of mitochondrial division leads to various side effects, ultimately influencing cell survival, rather than solely targeting Drp1 inhibition.


Asunto(s)
Multiómica , Neuroblastoma , Humanos , Apoptosis , Fosfoproteínas , Serina , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
4.
Theranostics ; 12(13): 5803-5819, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966581

RESUMEN

Rationale: Very preterm infants may require dexamethasone (Dex) for facilitating extubation or treating bronchopulmonary dysplasia. However, Dex may result in disturbance of metabolisms. This study was to investigate the effects of postnatal short course Dex exposure on brown adipose tissue (BAT) in neonatal rats. Method: Neonatal rats received either three consecutive doses of daily Dex (0.2 mg/kg/day) or saline from postnatal P1 to P3. We investigated the effects of Dex on BAT including thermogenesis, mitochondrial dynamics and autophagy flux. We also compared diurnal temperature variation between preterm infants who received systemic corticosteroid and their treatment-naïve controls. Results: Postnatal Dex treatment induced growth retardation, BAT whitening, UCP1 downregulation and cold intolerance in neonatal rats. BAT mitochondria were damaged, evident by loss of normal number, structure, and alignment of cristae. Mitochondrial fission-fusion balance was disrupted and skewed toward increased fusion, reflected by increased OPA1 and MFN2 and decreased DRP1, FIS1 and phosphorylated MFF protein levels. Autophagosome synthesis was increased but clearance was inhibited, indicated by accumulation of p62 protein after Dex treatment and no further increase of LC3-II after chloroquine co-treatment. While autophagy modulators, including chloroquine and rapamycin, did not improve UCP1 downregulation and BAT whitening, AMPK activators could partially rescue these damages. We also demonstrated that preterm infants had higher diurnal temperature variation during corticosteroid treatment. Conclusions: Postnatal short course Dex impaired BAT mitochondrial function and autophagy flux in rat pups. AMPK activators had the potential to rescue the damage.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Tejido Adiposo Pardo , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Animales Recién Nacidos , Autofagia , Cloroquina , Dexametasona/metabolismo , Dexametasona/farmacología , Humanos , Recién Nacido , Recien Nacido Prematuro , Ratas , Termogénesis
5.
Front Nutr ; 9: 922993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990345

RESUMEN

Background and aims: Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods: A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results: The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion: Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.

6.
Sci Rep ; 11(1): 19469, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593921

RESUMEN

Gut microbiota is very important for energy metabolism and regulation, which in turn affect the health and physiological functions of the host, and provide energy required for exercise. Supplementation with probiotics may be one of the ways to change the gut microbiota. In recent years, many studies have shown that probiotic supplementation can effectively improve sports performance. In this study, we screened Lactobacillus plantarum (PL-02), a probiotic of human-origin, from the intestines of 2008 Olympic women's 48 kg weightlifting gold medalist and explored the role of PL-02 in improved exercise endurance performance, reduced fatigue biochemical parameters, and changes in body composition. Male Institute of Cancer Research (ICR) mice were assigned to 0, 2.05 × 109, 4.10 × 109 and 1.03 × 1010 CFU/kg/day groups and were fed by oral gavage once daily for 4 weeks. The results showed that 4 weeks of PL-02 supplementation could significantly increase muscle mass, muscle strength and endurance performance, and hepatic and muscular glycogen storage. Furthermore, PL-02 could significantly decrease lactate, blood urea nitrogen (BUN), ammonia, and creatine kinase (CK) levels after exercise (p < 0.05). We believe that PL-02 can be used as a supplement to improve exercise performance and for its anti-fatigue effect.


Asunto(s)
Tolerancia al Ejercicio , Lactobacillus plantarum , Fuerza Muscular , Probióticos/administración & dosificación , Administración Oral , Animales , Femenino , Microbioma Gastrointestinal , Glucógeno/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal
7.
Appl Physiol Nutr Metab ; 43(7): 669-676, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29378153

RESUMEN

Vascular endothelial dysfunction is a potential risk factor for cardiovascular disease. This study evaluated the effect of curcumin on factors associated with vascular dysfunction using rats fed a high-sucrose, high-fat (HSF) diet. The experiment included 2 animal feeding phases. In the first feeding phase, male Sprague-Dawley rats were randomly divided into 2 groups: the control group (n = 8) was fed a standard diet (AIN-93G) and the HSF group (n = 24) was fed an HSF diet for 8 weeks to induce obesity. In the second feeding phase, lasting 4 weeks, the HSF group was randomly divided into 3 subgroups: the O group (n = 8) continued feeding on the HSF diet, the OA group (n = 8) had the HSF diet replaced with AIN-93G, and the OC group (n = 8) was fed the HSF diet supplemented with curcumin (300 mg/kg body weight daily). After 8 weeks, the HSF diet significantly elevated levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), insulin, homeostatic model assessment insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), C-reactive protein (CRP), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) but significantly reduced levels of nitric oxide (NO) and high-density lipoprotein cholesterol (HDL-C). After dietary intervention, the OA and OC groups exhibited significantly lower levels of AST, ALT, HOMA-IR, cholesterol, LDL-C, Hcy, CRP, VCAM-1, and ICAM-1 and higher levels of NO and catalase (CAT) activity compared with the O group. Superoxide dismutase, CAT, and glutathione peroxidase activities were increased in the OA group, while CAT levels were enhanced in the OC group. In conclusion, this study showed that curcumin supplementation and diet modification can inhibit HSF diet-induced vascular dysfunction potentially by enhancing NO production and antioxidant enzyme activities, thereby suppressing inflammation and oxidative damage in the vascular endothelium.


Asunto(s)
Antioxidantes/metabolismo , Curcumina/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/efectos adversos , Enfermedades Vasculares/tratamiento farmacológico , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Colesterol/sangre , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Homocisteína/sangre , Inflamación/tratamiento farmacológico , Insulina/sangre , Resistencia a la Insulina , Molécula 1 de Adhesión Intercelular/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Malondialdehído/sangre , Obesidad/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Riesgo , Molécula 1 de Adhesión Celular Vascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA