Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuroscience ; 297: 11-21, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25813705

RESUMEN

Nicotine has been shown to attenuate experimental autoimmune encephalomyelitis (EAE) through inhibiting inflammation in microglial populations during the disease course. In this study, we investigated whether nicotine modified the regenerative process in EAE by examining nestin-expressing neural stem cells (NSCs) in the spinal cord, which is the primary area of demyelination and inflammation in EAE. Our results show that the endogenous neurogenic responses in the spinal cord after EAE are limited and delayed: while nestin expression is increased, the proliferation of ependymal cells is inhibited compared to healthy animals. Nicotine application significantly reduced nestin expression and partially allowed for the proliferation of ependymal cells. We found that reduction of ependymal cell proliferation correlated with inflammation in the same area, which was relieved by the administration of nicotine. Further, increased numbers of oligodendrocytes (OLs) were observed after nicotine treatment. These findings give a new insight into the mechanism of how nicotine functions to attenuate EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/complicaciones , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/etiología , Neurogénesis/efectos de los fármacos , Nicotina/uso terapéutico , Agonistas Nicotínicos/uso terapéutico , Animales , Antígenos/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas de Dominio Doblecortina , Encefalomielitis Autoinmune Experimental/inducido químicamente , Proteína Ácida Fibrilar de la Glía/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Antígeno Ki-67/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Degeneración Nerviosa/patología , Nestina/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuropéptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Proteoglicanos/metabolismo , Médula Espinal/patología , Factores de Tiempo
2.
Cell Death Differ ; 17(12): 1816-29, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21076477

RESUMEN

The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons.


Asunto(s)
Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/fisiología , Células-Madre Neurales/citología , Neurogénesis , Neuronas/citología , Proteínas Nucleares/fisiología , Proteínas Supresoras de Tumor/fisiología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Senescencia Celular , Sistema Nervioso Central/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Hidrocefalia/patología , Ratones , Ratones Noqueados , Mitosis , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Fase S , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Acta Neurochir Suppl ; 105: 51-3, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19066082

RESUMEN

INTRODUCTION: Microglia activate upon injury, migrate to the injury site, proliferate locally, undergo morphological and gene expression changes, and phagocytose injured and dying cells. Cytokines and proteases secreted by these cells contribute to the injury and edema formed. We studied the injury outcome after local elimination/paralysis of microglia. METHODS: Adult male mice were subjected to intracerebral hemorrhage (ICH) by intra-caudate injection of either collagenase or autologous blood. Mice survived for different periods of time, and were subsequently evaluated for neurological deficits, size of the hematoma, and microglia activation. Mice expressing an fms-GFP transgene or the CD11b-HSVTK transgene were also used. For elimination of monocytes/macrophages, CD11b-HSVTK mice were treated with ganciclovir prior to hemorrhage. Modifiers of microglial activation were also used. RESULTS: Induction of ICH resulted in robust microglia activation and recruitment of macrophages. Inactivation of these cells, genetically or pharmacologically, pointed to a critical role of the time of such inactivation, indicating that their role is distinct at different time points following injury. Edema formation is decreased when microglia activation is inhibited, and neurological outcomes are improved. CONCLUSIONS: Microglia, as immunomodulatory cells, have the ability to modify the final presentation of ICH.


Asunto(s)
Hemorragia Cerebral/patología , Microglía/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Edema Encefálico , Antígeno CD11b/biosíntesis , Antígeno CD11b/genética , Proteínas de Unión al Calcio/metabolismo , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/complicaciones , Colagenasas , Modelos Animales de Enfermedad , Ganciclovir/uso terapéutico , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos , Microglía/efectos de los fármacos , Enfermedades del Sistema Nervioso/etiología , Examen Neurológico , Factores de Tiempo
4.
J Cell Sci ; 112 ( Pt 22): 4007-16, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10547361

RESUMEN

Tissue plasminogen activator mediates excitotoxin-induced neurodegeneration and microglial activation in the mouse hippocampus. Here we show that tissue plasminogen activator (tPA) acts in a protease-independent manner to modulate the activation of microglia, the cells of the central nervous system with macrophage properties. Cultured microglia from tPA-deficient mice can phagocytose as efficiently as wild-type microglia. However, tPA-deficient microglia in mixed cortical cultures exhibit attenuated activation in response to lipopolysaccharide, as judged by morphological changes, increased expression of the activation marker F4/80 and the release of the pro-inflammatory cytokine tumor necrosis factor-(&agr;). When tPA is added to tPA deficient cortical cultures prior to endotoxin stimulation, microglial activation is restored to levels comparable to that observed in wild-type cells. Proteolytically-inactive tPA can also restore activation of tPA-deficient microglia in culture and in vivo. However, this inactive enzyme does not restore susceptibility of tPA-deficient hippocampal neurons to excitotoxin-mediated cell death. These results dissociate two different functions of tPA: inactive enzyme can mediate microglial activation, whereas proteolytically-competent protein also promotes neuronal degeneration. Thus tPA is identified as a new cytokine in the central nervous system.


Asunto(s)
Sistema Nervioso Central/fisiología , Citocinas/fisiología , Microglía/efectos de los fármacos , Activador de Tejido Plasminógeno/farmacología , Animales , Antígenos de Diferenciación/análisis , Catálisis , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ensayo de Inmunoadsorción Enzimática , Hidrólisis , Inmunohistoquímica , Lipopolisacáridos/farmacología , Ratones , Microglía/citología , Microglía/metabolismo , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Fagocitosis , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/fisiología , Factor de Crecimiento Transformador alfa/metabolismo
5.
Nat Med ; 4(2): 228-31, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9461198

RESUMEN

Intravenous tissue plasminogen activator (tPA) is used to treat acute stroke because of its thrombolytic activity and its ability to restore circulation to the brain. However, this protease also promotes neurodegeneration after intracerebral injection of excitotoxins such as glutamate, and neuronal damage after a cerebral infarct is thought to be mediated by excitotoxins. To investigate the effects of tPA on cerebral viability during ischemia/reperfusion, we occluded the middle cerebral artery in wild-type and tPA-deficient mice with an intravascular filament. This procedure allowed us to examine the role of tPA in ischemia, independent of its effect as a thrombolytic agent. tPA-deficient mice exhibited approximately 50% smaller cerebral infarcts than wild-type mice. Intravenous injection of tPA into tPA-/- or wild-type mice produced larger infarcts, indicating that tPA can increase stroke-induced injury. Since tPA promotes desirable (thrombolytic) as well as undesirable (neurotoxic) outcomes during stroke, future therapies should be aimed at countering the excitotoxic damage of tPA to afford even better neuroprotection after an acute cerebral infarct.


Asunto(s)
Isquemia Encefálica/patología , Neuronas/efectos de los fármacos , Activador de Tejido Plasminógeno/deficiencia , Activador de Tejido Plasminógeno/farmacología , Animales , Antígenos de Diferenciación/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/tratamiento farmacológico , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Microglía/efectos de los fármacos , Activador de Tejido Plasminógeno/metabolismo
6.
J Mol Med (Berl) ; 75(5): 341-7, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9181475

RESUMEN

Tissue plasminogen activator (tPA), the serine protease that converts inactive plasminogen to the protease plasmin, was recently shown to mediate neurodegeneration in the mouse hippocampus. Mice deficient in tissue plasminogen activator (tPA) display a dramatic resistance to a paradigm of excitotoxic neuronal death that involves intrahippocampal injection of the excitotoxin. This model is thought to reproduce the mechanism of neuronal death observed during acute (such as ischemic stroke) and degenerative (such as amyotrophic lateral sclerosis) diseases of the nervous system. The requirement for the proteolytic activity of tPA to mediate neuronal death is acute in the adult mouse. Serine protease inhibitors, specific for tPA or the tPA/plasmin proteolytic cascade, are effective in conferring extensive neuroprotection following the excitotoxic injection. These findings suggest possible new ways for interfering with the neuronal death observed in the hippocampus as a result of excitotoxicity. In addition, tPA is produced in the hippocampus primarily by microglial cells, which become activated in response to the neuronal injury. Blocking microglial activation has been shown in other injury paradigms to protect against neuronal death, therefore suggesting another way to retard neurodegeneration in the CNS. Furthermore, after the insult has been inflicted and in the presence of a compromised blood-brain barrier macrophages (cells deriving from the same lineage as microglia) migrate into the brain, where they are thought to contribute to the neuronal cell loss by secreting neurotoxic molecules. If these macrophages/microglia expressed, however, a tPA inhibitor, rather than the possibly neurotoxic tPA, they might be able to protect the neurons from dying.


Asunto(s)
Muerte Celular , Neuronas/fisiología , Activador de Tejido Plasminógeno/fisiología , Animales , Trasplante de Médula Ósea , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Isquemia/patología , Ratones , Microglía/fisiología , Degeneración Nerviosa , Neurotoxinas , Serina Endopeptidasas/metabolismo
7.
J Neurosci ; 16(7): 2220-5, 1996 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-8601802

RESUMEN

Tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to active plasmin, is produced in the rat and mouse hippocampus and participates in neuronal plasticity. To help define the role of tPA in the nervous system, we have analyzed the regulation of its expression in the neuronal cell line PC12. In control cultures, tPA activity is exclusively cell-associated, and no activity is measurable in the culture medium. When the cells are treated with depolarizing agents, such as KCI, tPA activity becomes detectable in the medium. The increased secreted tPA activity is not accompanied by an increase in tPA mRNA levels, and it is not blocked by protein synthesis inhibitors. In contrast, tPA release is abolished by Ca2+ channel blockers, suggesting that chemically induced membrane depolarization stimulates the secretion of preformed enzyme. Moreover, KCI has a similar effect in vivo when administered to the murine brain via an osmotic pump: tPA activity increases along the CA2-CA3 regions and dentate gyrus of the hippocampal formation. These results demonstrate a neuronal activity-dependent secretory mechanism that can rapidly increase the amount of tPA in neuronal tissue.


Asunto(s)
Calcio/metabolismo , Potenciales de la Membrana/fisiología , Activador de Tejido Plasminógeno/metabolismo , Animales , Northern Blotting , Bloqueadores de los Canales de Calcio/farmacología , Cricetinae , Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Células PC12/metabolismo , Células PC12/fisiología , Cloruro de Potasio/farmacología , ARN Mensajero/análisis , Ratas , Activador de Tejido Plasminógeno/genética
8.
Biochem J ; 293 ( Pt 1): 289-95, 1993 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8328969

RESUMEN

Purified recombinant mouse ornithine decarboxylase (ODC) was denatured with urea or with guanidinium chloride. Enzymic activity was efficiently recovered upon dilution of the denaturing agent. ODC renatured after urea treatment was further characterized. Kinetics of decarboxylation of the natural substrate ornithine or of the suicide substrate alpha-difluoromethylornithine (DFMO) were not significantly changed by denaturation/renaturation. Surprisingly, the renatured enzyme was not stably labelled with radioactive DFMO, in contrast with the native enzyme not subjected to denaturation. Native and renatured ODC did not differ in their c.d. spectra, but the former contained four reactive cysteine residues and the latter seven. These data indicate that a conformational change results from denaturation/renaturation that does not alter decarboxylation of substrates, but does change the accessibility or stability of the cysteine-360 residue modified by decarboxylated DFMO.


Asunto(s)
Ornitina Descarboxilasa/química , Animales , Sitios de Unión , Descarboxilación , Eflornitina/química , Eflornitina/metabolismo , Guanidina , Guanidinas/química , Ratones , Mutación , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Conformación Proteica , Desnaturalización Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA