Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Med ; 4(1): 51-66.e10, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36395757

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (iPSCs) are expected to be useful for regenerative medicine for many diseases. Many researchers have focused on and enabled the generation of differentiated cells or tissue-like structures, including organoids, which help to ameliorate target diseases. To promote such cell therapies, we established a clinically applicable iPSC haplobank matching as many people as possible in Japan. METHODS: Through cooperation with several organizations, we recruited donors whose human leukocyte antigens (HLAs) involved in immunorejection were homozygous. The peripheral or umbilical cord blood collected from the donors was used for iPSC production by electroporation of episomal vectors. These iPSC lines were then subjected to testing, including genome analyses and sterility, to maximize safety. FINDINGS: We constructed a clinical-grade haplobank of 27 iPSC lines from 7 donors according to good manufacturing practice regulations. However, reasons to avoid using iPSC lines include the presence of residual episomal vectors or genetic mutations in cancer-related genes. CONCLUSIONS: This haplobank provides HLA-matched iPSC lines for approximately 40% of the Japanese population. Since the haplobank's release in 2015, these iPSC lines have been used in more than 10 clinical trials. The establishment of this haplobank is an important step toward the clinical application of iPSCs in cell therapies. FUNDING: This study was supported by a research center network for the realization of regenerative medicine of the Japan Agency for Medical Research and Development (AMED) under grant number JP20bm0104001h0108.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Pueblos del Este de Asia , Homocigoto , Antígenos HLA/genética , Antígenos HLA/metabolismo , Diferenciación Celular
2.
Cell Transplant ; 31: 9636897221120500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062469

RESUMEN

We reported in 2018 that among several extracellular matrices, fibronectin, type I collagen, type IV collagen, laminin I, fibrinogen, and bovine serum albumin, fibronectin is particularly useful for adhesion of porcine pancreatic tissue. Subsequently, we developed a technology that enables the chemical coating of the constituent motifs of fibronectin onto cell culture dishes. In this experiment, we used islets (purity ≥ 90%), duct epithelial cells (purity ≥ 60%), and acinar cells (purity ≥ 99%) isolated from human pancreas according to the Edmonton protocol published in 2000 and achieved adhesion to the constituent motifs of fibronectin. A solution including cGMP Prodo Islet Media was used as the assay solution. In islets, adhesion was enhanced with the constitutive motifs of fibronectin compared with uncoated islets. In the functional evaluation of islets, insulin mRNA expression and insulin secretion were enhanced by the constitutive motif of fibronectin compared with non-coated islets. The stimulation index was comparable between non-coated islets and fibronectin motifs. In duct epithelial cells, adhesion was mildly promoted by the fibronectin component compared with non-coated component, while in acinar cells, adhesion was inhibited by the fibronectin component compared with the non-coated component. These data suggest that the constitutive motifs of fibronectin are useful for the adhesion of islets and duct epithelial cells.


Asunto(s)
Células Acinares , Islotes Pancreáticos , Animales , Células Epiteliales , Fibronectinas/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Polímeros , Porcinos
3.
iScience ; 25(10): 105052, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36147945

RESUMEN

Human hepatocytes were transfected with Sendai virus vectors (SeV) expressing OCT3/4, SOX2, KLF4, and C-MYC to produce hepatocyte-derived induced pluripotent stem cells (iPSCs). The messenger RNA (mRNA) expression of undifferentiated markers (passage 19-21) and hepatocyte-specific markers (HSMs) (passage 0-20) in 48 established hepatocyte-derived iPSC-like colonies was examined. Among the 48 clones, 10 clones continuously expressed HSM mRNA (HNF1ß and HNF4α) in passage 0-20. The colonies which expressed HSMs (iTS-L cells: induced tissue-specific stem cells from liver) showed a different tendency in microarray and methylation analyses to fibroblast-derived iPSCs (strain: 201B7). iTS-L cells were less likely to form teratomas in mice than iPSCs (He). The iTS-L cells were differentiated into hepatocyte-like cells more efficiently than iPSCs (He) or iPSCs (201B7). These data suggest that SeV expressing OCT3/4, SOX2, KLF4, and C-MYC induce the generation of iPSCs and iTS-L cells.

4.
Stem Cells Dev ; 31(21-22): 706-719, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35726387

RESUMEN

In human induced pluripotent stem cells (hiPSCs), laminin-511/α6ß1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway. The interaction between laminin-511/α6ß1 integrin and E-cadherin, an intercellular adhesion molecule, results in protection against apoptosis through the proto-oncogene tyrosine-protein kinase Fyn(Fyn)-RhoA-ROCK signaling pathway and the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathway for cell death). In this article, the impact of laminin-511 on hiPSC on α6ß1 integrin-Fyn-RhoA-ROCK signaling is discussed and explored along with validation experiments. PIK3CA mRNA (mean [standard deviation {SD}]: iMatrix-511, 1.00 [0.61]; collagen+MFGE8, 0.023 [0.02]; **P < 0.01; n = 6) and PIK3R1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.79]; collagen+MFGE8, 0.040 [0.06]; *P < 0.05; n = 6) were upregulated by iMatrix-511 resulting from an increased expression of Integrin α6 mRNA (mean [SD]: iMatrix-511, 1.00 [0.42]; collagen+MFGE8, 0.23 [0.05]; **P < 0.01; n = 6). The iMatrix-511 increased the expression of p120-Catenin mRNA (mean [SD]: iMatrix-511, 1.00 [0.71]; collagen+MFGE8, 0.025 [0.03]; **P < 0.01; n = 6) and RAC1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.28]; collagen+MFGE8, 0.39 [0.15]; **P < 0.01; n = 6) by increasing the expression of E-cadherin mRNA (mean [SD]: iMatrix-511, 1.00 [0.38]; collagen+MFGE8, 0.16 [0.11]; **P < 0.01; n = 6). As a result, iMatrix-511 increased the expression of P190 RhoGAP (GTPase-activating proteins) mRNA, such as ARHGAP1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.57]; collagen+MFGE8, 0.032 [0.03]; **P < 0.01; n = 6), ARHGAP4 mRNA (mean [SD]: iMatrix-511, 1.00 [0.56]; collagen+MFGE8, 0.039 [0.049]; **P < 0.01; n = 6), and ARHGAP5 mRNA (mean [SD]: iMatrix-511, 1.00 [0.39]; collagen+MFGE8, 0.063 [0.043]; **P < 0.01; n = 6). Western blotting showed that phospho-Rac1 remained in the cytoplasm and phospho-Fyn showed nuclear transition in iPSCs cultured on iMatrix-511. Proteome analysis showed that PI3K signaling was enhanced and cytoskeletal actin was activated in iPSCs cultured on iMatrix-511. In conclusion, laminin-511 strongly activated the cell survival by promoting α6ß1 integrin-Fyn-RhoA-ROCK signaling in hiPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Laminina , Humanos , Integrina alfa6beta1/metabolismo , Laminina/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colágeno/metabolismo , ARN Mensajero , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Sci Rep ; 12(1): 2516, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169157

RESUMEN

Clinical use of human pluripotent stem cells (hPSCs) is hampered by the technical limitations of their expansion. Here, we developed a chemically synthetic culture substrate for human pluripotent stem cell attachment and maintenance. The substrate comprises a hydrophobic polyvinyl butyral-based polymer (PVB) and a short peptide that enables easy and uniform coating of various types of cell culture ware. The coated ware exhibited thermotolerance, underwater stability and could be stored at room temperature. The substrate supported hPSC expansion in combination with most commercial culture media with an efficiency similar to that of commercial substrates. It supported not only the long-term expansion of examined iPS and ES cell lines with normal karyotypes during their undifferentiated state but also directed differentiation of three germ layers. This substrate resolves major concerns associated with currently used recombinant protein substrates and could be applied in large-scale automated manufacturing; it is suitable for affordable and stable production of clinical-grade hPSCs and hPSC-derived products.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Péptidos/farmacología , Polivinilos/farmacología , Andamios del Tejido/química , Adhesión Celular/efectos de los fármacos , Línea Celular , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos/metabolismo , Polivinilos/metabolismo
6.
STAR Protoc ; 3(4): 101884, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595898

RESUMEN

Our recent study demonstrated the generation of induced tissue-specific stem/progenitor (iTS/iTP) cells by the transient overexpression of reprogramming factors combined with tissue-specific selection. Here, we present a protocol to reprogram human hepatocytes to generate human induced tissue-specific liver stem (iTS-L) cells. Human hepatocytes are transfected with Sendai virus vectors (SeV) expressing OCT3/4, SOX2, KLF4, and c-MYC. iTS-L cells continuously express mRNA of hepatocyte-specific markers (HNF1ß and HNF4α) and do not form teratomas. For complete details on the use and execution of this protocol, please refer to Nakashima et al. (2022).1.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Virus Sendai/genética , Factor 4 Similar a Kruppel , Hepatocitos
7.
J Biosci Bioeng ; 118(2): 223-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24635945

RESUMEN

When developing cell culture processes for therapeutic antibodies, the low content of aggregated proteins is the most critical because administering aggregated antibody molecules might result in adverse effects such as immunogenicity. To characterize cells with high productivity and quality, we determined factors that are closely related to antibody titer, which is a productivity indicator, and the area percentage of high molecular weight species in cultivated media, which is equivalent to aggregate content and is used as a quality indicator. We examined the factors influencing antibody titer and aggregate content using various data from 28 cell lines throughout their culture periods from growth to death phases. Our study using correlation analysis revealed that statistically significant correlations between factors and indicators changes with sampling points, hence we thought that various factors would influence each indicator simultaneously. To understand the relationship between these factors and titer/aggregates contents, we performed stepwise multiple linear regression analyses and deduced a multiple linear model for each indicator. The titer was found to positively associate with specific growth rate and specific production rate and negatively with intracellular heavy chain content. The aggregate content was found to positively associate with protein disulfide isomerase mRNA level and negatively with light chain secreted into culture media, specific production rate, intracellular light chain content, and specific growth rate. Our observations suggest that correct and efficient assembling and/or folding of an antibody molecule in an endoplasmic reticulum are important for high titer and low aggregates contents.


Asunto(s)
Anticuerpos Monoclonales Humanizados/biosíntesis , Animales , Anticuerpos Monoclonales Humanizados/genética , Antineoplásicos/metabolismo , Células CHO , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Cadenas Ligeras de Inmunoglobulina/genética , Modelos Lineales , Peso Molecular , Análisis Multivariante , Agregado de Proteínas , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Multimerización de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trastuzumab
8.
J Infect Dis ; 203(11): 1574-81, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21592986

RESUMEN

BACKGROUND: There is still no effective method to prevent or treat severe acute respiratory syndrome (SARS), which is caused by SARS coronavirus (CoV). In the present study, we evaluated the efficacy of a fully human monoclonal antibody capable of neutralizing SARS-CoV in vitro in a Rhesus macaque model of SARS. METHODS: The antibody 5H10 was obtained by vaccination of KM mice bearing human immunoglobulin genes with Escherichia coli-producing recombinant peptide containing the dominant epitope of the viral spike protein found in convalescent serum samples from patients with SARS. RESULTS: 5H10, which recognized the same epitope that is also a cleavage site critical for the entry of SARS-CoV into host cells, inhibited propagation of the virus and pathological changes found in Rhesus macaques infected with the virus through the nasal route. In addition, we analyzed the mode of action of 5H10, and the results suggested that 5H10 inhibited fusion between the virus envelope and host cell membrane. 5H10 has potential for use in prevention and treatment of SARS if it reemerges. CONCLUSIONS: This study represents a platform to produce fully human antibodies against emerging infectious diseases in a timely and safe manner.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas de Membrana/inmunología , Síndrome Respiratorio Agudo Grave/terapia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Proteínas del Envoltorio Viral/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Animales Modificados Genéticamente , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Western Blotting , Dominio Catalítico , Fusión Celular , Modelos Animales de Enfermedad , Células Gigantes/efectos de los fármacos , Humanos , Inmunohistoquímica , Pulmón/patología , Pulmón/virología , Macaca mulatta , Glicoproteínas de Membrana/genética , Ratones , Peptidil-Dipeptidasa A , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/genética
9.
FEBS J ; 278(3): 427-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21182594

RESUMEN

DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.


Asunto(s)
Caspasas/metabolismo , Fragmentación del ADN , Animales , Apoptosis , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Fosforilación , Transducción de Señal
10.
FEBS J ; 277(2): 404-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19968860

RESUMEN

DNA fragmentation is a hallmark of apoptosis that occurs in a variety of cell types; however, it remains unclear whether caspase-3 is required for its induction. To investigate this, we produced caspase-3 knockout Chinese hamster ovary (CHO)-K1 cells and examined the effects of gene knockout and treatment with caspase-3 inhibitors. Okadaic acid (OA) is a potent inhibitor of the serine/threonine protein phosphatases (PPs) PP1 and PP2A, which induce apoptotic cellular reactions. Treatment of caspase-3(-/-) cells with OA induced DNA fragmentation, indicating that caspase-3 is not an essential requirement. However, in the presence of benzyloxycarbonyl-Asp-Glu-Val-Asp (OMe) fluoromethylketone (z-DEVD-fmk), DNA fragmentation occurred in CHO-K1 cells but not in caspase-3(-/-) cells, suggesting that caspase-3 is involved in OA-induced DNA fragmentation that does not utilize DEVDase activity. In the absence of caspase-3, DEVDase activity may play an important role. In addition, OA-induced DNA fragmentation was reduced but not blocked in CHO-K1 cells, suggesting that caspase-3 is involved in caspase-independent OA-induced DNA fragmentation. Furthermore, OA-induced cleavage of caspase-3 and DNA fragmentation were blocked by pretreatment with the wide-ranging serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. These results suggest that serine proteases regulate DNA fragmentation upstream of caspase-3.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Caspasa 3/metabolismo , Fragmentación del ADN/efectos de los fármacos , Ácido Ocadaico/farmacología , Animales , Secuencia de Bases , Células CHO , Caspasa 3/deficiencia , Caspasa 3/genética , Inhibidores de Caspasas , Cricetinae , Cricetulus , Inhibidores de Cisteína Proteinasa/farmacología , Cartilla de ADN/genética , ADN Complementario/genética , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Péptido Hidrolasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Clorometilcetona Tosilisina/farmacología , Clorometilcetona de Tosilfenilalanila/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA