Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Med (Lausanne) ; 3: 41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27725930

RESUMEN

Eliminating virally infected cells is an essential component of any HIV eradication strategy. Radioimmunotherapy (RIT), a clinically established method for killing cells using radiolabeled antibodies, was recently applied to target HIV-1 gp41 antigen expressed on the surface of infected cells. Since gp41 expression by infected cells is likely downregulated in patients on antiretroviral therapy (ART), we evaluated the ability of RIT to kill ART-treated infected cells using both in vitro models and lymphocytes isolated from HIV-infected subjects. Human peripheral blood mononuclear cells (PBMCs) were infected with HIV and cultured in the presence of two clinically relevant ART combinations. Scatchard analysis of the 2556 human monoclonal antibody to HIV gp41 binding to the infected and ART-treated cells demonstrated sufficient residual expression of gp41 on the cell surface to warrant subsequent RIT. This is the first time the quantification of gp41 post-ART is being reported. Cells were then treated with Bismuth-213-labeled 2556 antibody. Cell survival was quantified by Trypan blue and residual viremia by p24 ELISA. Cell surface gp41 expression was assessed by Scatchard analysis. The experiments were repeated using PBMCs isolated from blood specimens obtained from 15 HIV-infected individuals: 10 on ART and 5 ART-naïve. We found that 213Bi-2556 killed ART-treated infected PBMCs and reduced viral production to undetectable levels. ART and RIT co-treatment was more effective at reducing viral load in vitro than either therapy alone, indicating that gp41 expression under ART was sufficient to allow 213Bi-2556 to deliver cytocidal doses of radiation to infected cells. This study provides proof of concept that 213Bi-2556 may represent an innovative and effective targeting method for killing HIV-infected cells treated with ART and supports continued development of 213Bi-2556 for co-administration with ART toward an HIV eradication strategy.

2.
Expert Rev Clin Immunol ; 10(5): 553-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24734906

RESUMEN

HIV/AIDS remains an enormous public health burden. Advances in anti-retroviral therapy (ART) have greatly reduced mortality and morbidity but HIV remains incurable, with patients suffering numerous disease- and treatment-related side effects. Any curative strategy for HIV must selectively eliminate existing infected cells. Radioimmunotherapy (RIT) is an established clinical modality in cancer treatment and has been shown to be effective in multiple infectious diseases models. We have recently demonstrated that RIT using a gp41-targeting antibody was effective and safe in eliminating HIV-infected cells in vivo (in mice), in vitro, and ex vivo in cells from HIV patients treated with ART. In addition, there is strong evidence that this radiolabeled antibody can eliminate HIV infected cells across the blood brain barrier. We consider RIT to be the most promising backbone strategy for HIV eradication.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/radioterapia , Radioinmunoterapia/métodos , Animales , Terapia Combinada , Humanos , Ratones , Reproducibilidad de los Resultados
3.
Nucl Med Biol ; 40(2): 177-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23146306

RESUMEN

INTRODUCTION: In spite of recently approved B-RAF inhibitors and immunomodulating antibodies, metastatic melanoma has poor prognosis and novel treatments are needed. Melanoma stem cells (MSC) have been implicated in the resistance of this tumor to chemotherapy. Recently we demonstrated in a Phase I clinical trial in patients with metastatic melanoma that radioimmunotherapy (RIT) with 188-Rhenium((188)Re)-6D2 antibody to melanin was a safe and effective modality. Here we investigated the interaction of MSC with RIT as a possible mechanism for RIT efficacy. METHODS: Mice bearing A2058 melanoma xenografts were treated with either 1.5 mCi (188)Re-6D2 antibody, saline, unlabeled 6D2 antibody or (188)Re-labeled non-specific IgM. RESULTS: On Day 28 post-treatment the tumor size in the RIT group was 4-times less than in controls (P<0.001). The tumors were analyzed by immunohistochemistry and FACS for two MSC markers--chemoresistance mediator ABCB5 and H3K4 demethylase JARID1B. There were no significant differences between RIT and control groups in percentage of ABCB5 or JARID1B-positive cells in the tumor population. Our results demonstrate that unlike chemotherapy, which kills tumor cells but leaves behind MSC leading to recurrence, RIT kills MSC at the same rate as the rest of tumor cells. CONCLUSIONS: These results have two main implications for melanoma treatment and possibly other cancers. First, the susceptibility of ABCB5+ and JARID1B+cells to RIT in melanoma might be indicative of their susceptibility to antibody-targeted radiation in other cancers where they are present as well. Second, specifically targeting cancer stem cells with radiolabeled antibodies to ABCB5 or JARID1B might help to completely eradicate cancer stem cells in various cancers.


Asunto(s)
Melanoma Experimental/patología , Melanoma Experimental/radioterapia , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Radioinmunoterapia , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de la radiación , Femenino , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Melaninas/inmunología , Melanoma Experimental/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(43): 18392-7, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20930119

RESUMEN

Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated microposts. Here, we describe a high-throughput microfluidic mixing device, the herringbone-chip, or "HB-Chip," which provides an enhanced platform for CTC isolation. The HB-Chip design applies passive mixing of blood cells through the generation of microvortices to significantly increase the number of interactions between target CTCs and the antibody-coated chip surface. Efficient cell capture was validated using defined numbers of cancer cells spiked into control blood, and clinical utility was demonstrated in specimens from patients with prostate cancer. CTCs were detected in 14 of 15 (93%) patients with metastatic disease (median = 63 CTCs/mL, mean = 386 ± 238 CTCs/mL), and the tumor-specific TMPRSS2-ERG translocation was readily identified following RNA isolation and RT-PCR analysis. The use of transparent materials allowed for imaging of the captured CTCs using standard clinical histopathological stains, in addition to immunofluorescence-conjugated antibodies. In a subset of patient samples, the low shear design of the HB-Chip revealed microclusters of CTCs, previously unappreciated tumor cell aggregates that may contribute to the hematogenous dissemination of cancer.


Asunto(s)
Separación Celular/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Células Neoplásicas Circulantes/patología , Secuencia de Bases , Ingeniería Biomédica , Agregación Celular , Línea Celular Tumoral , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Humanos , Neoplasias Pulmonares/sangre , Masculino , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/secundario
5.
Sci Transl Med ; 2(25): 25ra23, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20424012

RESUMEN

Rare circulating tumor cells (CTCs) are present in the blood of patients with metastatic epithelial cancers but have been difficult to measure routinely. We report a quantitative automated imaging system for analysis of prostate CTCs, taking advantage of prostate-specific antigen (PSA), a unique prostate tumor-associated marker. The specificity of PSA staining enabled optimization of criteria for baseline image intensity, morphometric measurements, and integration of multiple signals in a three-dimensional microfluidic device. In a pilot analysis, we detected CTCs in prostate cancer patients with localized disease, before surgical tumor removal in 8 of 19 (42%) patients (range, 38 to 222 CTCs per milliliter). For 6 of the 8 patients with preoperative CTCs, a precipitous postoperative decline (<24 hours) suggests a short half-life for CTCs in the blood circulation. Other patients had persistent CTCs for up to 3 months after prostate removal, suggesting early but transient disseminated tumor deposits. In patients with metastatic prostate cancer, CTCs were detected in 23 of 36 (64%) cases (range, 14 to 5000 CTCs per milliliter). In previously untreated patients followed longitudinally, the numbers of CTCs declined after the initiation of effective therapy. The prostate cancer-specific TMPRSS2-ERG fusion was detectable in RNA extracted from CTCs from 9 of 20 (45%) patients with metastatic disease, and dual staining of captured CTCs for PSA and the cell division marker Ki67 indicated a broad range for the proportion of proliferating cells among CTCs. This method for analysis of CTCs will facilitate the application of noninvasive tumor sampling to direct targeted therapies in advanced prostate cancer and warrants the initiation of long-term clinical studies to test the importance of CTCs in invasive localized disease.


Asunto(s)
Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata/patología , Diagnóstico por Imagen , Femenino , Humanos , Masculino , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA