Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Mol Biol ; 432(9): 2998-3017, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32088186

RESUMEN

The protein p27, a prominent regulatory protein in eukaryotes and an intrinsically disordered protein (IDP), regulates cell division by causing cell cycle arrest when bound in ternary complex with cyclin-dependent kinase (Cdk2) and cyclins (e.g., Cdk2/Cyclin A). We present an integrative study of p27 and its binding to Cdk2/Cyclin A complex by performing single-molecule multiparameter fluorescence spectroscopy, stopped-flow experiments, and molecular dynamics simulations. Our results suggest that unbound p27 adopts a compact conformation and undergoes conformational dynamics across several orders of magnitude in time (nano-to milliseconds), reflecting a multi-step mechanism for binding Cdk2/Cyclin A. Mutagenesis studies reveal that the region D1 in p27 plays a significant role in mediating the association kinetics, undergoing conformational rearrangement upon initial binding. Additionally, FRET experiments indicate an expansion of p27 throughout binding. The detected local and long-range structural dynamics suggest that p27 exhibits a limited binding surface in the unbound form, and stochastic conformational changes in D1 facilitate initial binding to Cdk2/Cyclin A complex. Furthermore, the post-kinase inhibitory domain (post-KID) region of p27 exchanges between distinct conformational ensembles: an extended regime exhibiting worm-like chain behavior, and a compact ensemble, which may protect p27 against nonspecific interactions. In summary, the binding interaction involves three steps: (i) D1 initiates binding, (ii) p27 wraps around Cdk2/Cyclin A and D2 binds, and (iii) the fully-formed fuzzy ternary complex is formed concomitantly with an extension of the post-KID region. An understanding of how the IDP nature of p27 underpins its functional interactions with Cdk2/Cyclin A provides insight into the complex binding mechanisms of IDPs and their regulatory mechanisms.


Asunto(s)
Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/química , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Imagen Individual de Molécula/métodos , Sitios de Unión , Ciclina A/química , Quinasa 2 Dependiente de la Ciclina/química , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia , Factores Complejos Ternarios/química
2.
Nat Commun ; 10(1): 1676, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976006

RESUMEN

p27Kip1 is an intrinsically disordered protein (IDP) that inhibits cyclin-dependent kinase (Cdk)/cyclin complexes (e.g., Cdk2/cyclin A), causing cell cycle arrest. Cell division progresses when stably Cdk2/cyclin A-bound p27 is phosphorylated on one or two structurally occluded tyrosine residues and a distal threonine residue (T187), triggering degradation of p27. Here, using an integrated biophysical approach, we show that Cdk2/cyclin A-bound p27 samples lowly-populated conformations that provide access to the non-receptor tyrosine kinases, BCR-ABL and Src, which phosphorylate Y88 or Y88 and Y74, respectively, thereby promoting intra-assembly phosphorylation (of p27) on distal T187. Even when tightly bound to Cdk2/cyclin A, intrinsic flexibility enables p27 to integrate and process signaling inputs, and generate outputs including altered Cdk2 activity, p27 stability, and, ultimately, cell cycle progression. Intrinsic dynamics within multi-component assemblies may be a general mechanism of signaling by regulatory IDPs, which can be subverted in human disease.


Asunto(s)
División Celular/fisiología , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Cristalografía por Rayos X , Ciclina A/aislamiento & purificación , Quinasa 2 Dependiente de la Ciclina/aislamiento & purificación , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/aislamiento & purificación , Proteínas de Fusión bcr-abl/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Fosforilación/fisiología , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína/fisiología , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología , Treonina/metabolismo , Tirosina/metabolismo , Familia-src Quinasas/aislamiento & purificación , Familia-src Quinasas/metabolismo
3.
Nat Commun ; 8(1): 922, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030545

RESUMEN

Yeast and cancer cells share the unusual characteristic of favoring fermentation of sugar over respiration. We now reveal an evolutionary conserved mechanism linking fermentation to activation of Ras, a major regulator of cell proliferation in yeast and mammalian cells, and prime proto-oncogene product. A yeast mutant (tps1∆) with overactive influx of glucose into glycolysis and hyperaccumulation of Fru1,6bisP, shows hyperactivation of Ras, which causes its glucose growth defect by triggering apoptosis. Fru1,6bisP is a potent activator of Ras in permeabilized yeast cells, likely acting through Cdc25. As in yeast, glucose triggers activation of Ras and its downstream targets MEK and ERK in mammalian cells. Biolayer interferometry measurements show that physiological concentrations of Fru1,6bisP stimulate dissociation of the pure Sos1/H-Ras complex. Thermal shift assay confirms direct binding to Sos1, the mammalian ortholog of Cdc25. Our results suggest that the Warburg effect creates a vicious cycle through Fru1,6bisP activation of Ras, by which enhanced fermentation stimulates oncogenic potency.Yeast and cancer cells both favor sugar fermentation in aerobic conditions. Here the authors describe a conserved mechanism from yeast to mammals where the glycolysis intermediate fructose-1,6-bisphosphate binds Cdc25/Sos1 and couples increased glycolytic flux to increased Ras proto-oncoprotein activity.


Asunto(s)
Fructosafosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Animales , Fermentación , Glucosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glucólisis , Proteína SOS1/genética , Proteína SOS1/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas ras/genética , ras-GRF1/genética , ras-GRF1/metabolismo
4.
Chembiochem ; 13(8): 1199-205, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22539214

RESUMEN

We have investigated the use of FlAsH, a small fluorogenic molecule that binds to tetracysteine motifs, to probe folding of the 15-HEAT repeat protein PR65A. PR65A is one of a special class of modular non-globular proteins known as tandem repeat proteins, which are composed of small structural motifs that stack to form elongated, one-dimensional architectures. We were able to introduce linear and bipartite tetracysteine motifs at several sites along the α-helical HEAT array of PR65A without disrupting the structure or stability. When the linear tetracysteine motif CCPGCC was used, FlAsH fluorescence reported globally on the folding of the protein. When the tetracysteine motif was displayed in bipartite mode through the engineering of pairs of cysteines on adjacent HEAT repeats, FlAsH fluorescence became a reporter of local conformation and of oligomerisation. Thus, by designing FlAsH-binding sites at different locations along the repeat array one can interrogate specific properties of PR65A, paving the way for structure-function analysis of this protein both in vitro and in the cell.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Sitios de Unión , Cisteína/química , Cisteína/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Espectrometría de Fluorescencia/métodos , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA