Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 29(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542866

RESUMEN

The development of effective inhibitors targeting the Kirsten rat sarcoma viral proto-oncogene (KRASG12D) mutation, a prevalent oncogenic driver in cancer, represents a significant unmet need in precision medicine. In this study, an integrated computational approach combining structure-based virtual screening and molecular dynamics simulation was employed to identify novel noncovalent inhibitors targeting the KRASG12D variant. Through virtual screening of over 1.7 million diverse compounds, potential lead compounds with high binding affinity and specificity were identified using molecular docking and scoring techniques. Subsequently, 200 ns molecular dynamics simulations provided critical insights into the dynamic behavior, stability, and conformational changes of the inhibitor-KRASG12D complexes, facilitating the selection of lead compounds with robust binding profiles. Additionally, in silico absorption, distribution, metabolism, excretion (ADME) profiling, and toxicity predictions were applied to prioritize the lead compounds for further experimental validation. The discovered noncovalent KRASG12D inhibitors exhibit promises as potential candidates for targeted therapy against KRASG12D-driven cancers. This comprehensive computational framework not only expedites the discovery of novel KRASG12D inhibitors but also provides valuable insights for the development of precision treatments tailored to this oncogenic mutation.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Simulación del Acoplamiento Molecular , Mutación
2.
J Chem Inf Model ; 64(5): 1433-1455, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38294194

RESUMEN

Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.


Asunto(s)
Inteligencia Artificial , Química Computacional , Humanos , Proteínas de Transporte de Membrana/química , Diseño de Fármacos , Descubrimiento de Drogas/métodos
3.
Chem Biol Drug Des ; 102(4): 857-869, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563791

RESUMEN

SARS-CoV-2 chymotrypsin-like cysteine protease (3CLpro ) is one of the most widely developed drug targets for COVID-19. This study aimed to design and synthesize isatin derivatives to target SARS-CoV-2 3CLpro in a covalent binding manner. Through the process, a potent 3CLpro inhibitor (5g) was discovered with an IC50 value of 0.43 ± 0.17 µM. To understand the binding affinity and specificity of 5g as a candidate inhibitor of SARS-CoV-2 3CLpro , several assays were conducted, including FRET enzyme activity assays, thermodynamic-based and kinetic-based validation of inhibitor-target interactions, and cell-based FlipGFP assays. The interaction mechanism between 3CLpro -5g was characterized by docking. Overall, these findings suggest that 5g is a new potent SARS-CoV-2 3CLpro inhibitor for the treatment of COVID-19.


Asunto(s)
COVID-19 , Isatina , Humanos , SARS-CoV-2 , Isatina/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Termodinámica , Antivirales/química , Simulación del Acoplamiento Molecular
4.
Comput Biol Med ; 155: 106709, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854228

RESUMEN

Small molecule inhibitors (SMIs) targeting oncostatin M (OSM) signaling pathway represent new therapeutics to combat cancer, inflammatory bowel disease (IBD) and CNS disease. Recently, the first-in-class SMI named SMI-10B that target OSM and block its interaction with receptor (OSMR) were reported. However, the binding pocket and interaction mode of the compound on OSM remain poorly understood, which hampering the rational design of SMIs that target OSM. Here, using SMI-10B as a probe, the multiple pockets on OSM for small molecules binding were extensively explored by unbiased molecular dynamics (MD) simulations. Then, the near-native structure of the complex was identified by molecular mechanics generalized Born surface area (MM/GBSA) binding energy funnel. Moreover, the binding stabilities of the protein-ligand complexes in near- and non-native conformations were verified by additional independent MD runs and absolute free energy perturbation (FEP) calculation. In summary, the unique feature of SMI-10B spontaneously binds to OSM characterized here not only provide detailed information for understanding the molecular mechanism of SMI-10B binding to OSM, but also will facilitate the rational design of novel and more potent SMIs to block OSM signaling.


Asunto(s)
Simulación de Dinámica Molecular , Subunidad beta del Receptor de Oncostatina M , Oncostatina M/metabolismo , Oncostatina M/farmacología , Subunidad beta del Receptor de Oncostatina M/química , Subunidad beta del Receptor de Oncostatina M/metabolismo , Unión Proteica , Transducción de Señal
5.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430323

RESUMEN

Kirsten rat sarcoma viral oncogene homolog (KRAS) is a small GTPase protein which plays an important role in the treatment of KRAS mutant cancers. The FDA-approved AMG510 and MRTX849 (phase III clinical trials) are two potent KRASG12C-selective inhibitors that target KRAS G12C. However, the drug resistance caused by the second-site mutation in KRAS has emerged, and the mechanisms of drug resistance at atom level are still unclear. To clarify the mechanisms of drug resistance, we conducted long time molecular dynamics simulations (75 µs in total) to study the structural and energetic features of KRAS G12C and its four drug resistant variants to inhibitors. The combined binding free energy calculation and protein-ligand interaction fingerprint revealed that these second-site mutations indeed caused KRAS to produce different degrees of resistance to AMG510 and MRTX849. Furthermore, Markov State Models and 2D-free energy landscapes analysis revealed the difference in conformational changes of mutated KRAS bound with and without inhibitors. Furthermore, the comparative analysis of these systems showed that there were differences in their allosteric signal pathways. These findings provide the molecular mechanism of drug resistance, which helps to guide novel KRAS G12C inhibitor design to overcome drug resistance.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Acetonitrilos , Neoplasias/genética
6.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232570

RESUMEN

In late 2019, a new coronavirus (CoV) caused the outbreak of a deadly respiratory disease, resulting in the COVID-19 pandemic. In view of the ongoing pandemic, there is an immediate need to find drugs to treat patients. SARS-CoV-2 papain-like cysteine protease (PLpro) not only plays an important role in the pathogenesis of the virus but is also a target protein for the development of inhibitor drugs. Therefore, to develop targeted inhibitors, it is necessary to analyse and verify PLpro sites and explore whether there are other cryptic binding pockets with better activity. In this study, first, we detected the site of the whole PLpro protein by sitemap of Schrödinger (version 2018), the cavity of LigBuilder V3, and DeepSite, and roughly judged the possible activated binding site area. Then, we used the mixed solvent dynamics simulation (MixMD) of probe molecules to induce conformational changes in the protein to find the possible cryptic active sites. Finally, the TRAPP method was used to predict the druggability of cryptic pockets and analyse the changes in the physicochemical properties of residues around these sites. This work will help promote the research of SARS-CoV-2 PLpro inhibitors.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Papaína , Secuencia de Aminoácidos , Proteasas Similares a la Papaína de Coronavirus , Humanos , Pandemias , Papaína/metabolismo , SARS-CoV-2 , Solventes
7.
ACS Chem Neurosci ; 12(11): 2013-2026, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33977725

RESUMEN

The triple reuptake inhibitors (TRIs) class is a class of effective inhibitors of human monoamine transporters (hMATs), which includes dopamine, norepinephrine, and serotonin transporters (hDATs, hNETs, and hSERTs). Due to the high degree of structural homology of the binding sites of those transporters, it is a great challenge to design potent TRIs with fine-tuned binding profiles. The molecular determinants responsible for the binding selectivity of TRIs to hDATs, hNETs, and hSERTs remain elusive. In this study, the solved X-ray crystallographic structure of hSERT in complex with escitalopram was used as a basis for modeling nine complexes of three representative TRIs (SEP225289, NS2359, and EB1020) bound to their corresponding targets. Molecular dynamics (MD) and effective post-trajectory analysis were performed to estimate the drug binding free energies and characterize the selective profiles of each TRI to hMATs. The common binding mode of studied TRIs to hMATs was revealed by hierarchical clustering analysis of the per-residue energy. Furthermore, the combined protein-ligand interaction fingerprint and residue energy contribution analysis indicated that several conserved and nonconserved "Warm Spots" such as S149, V328, and M427 in hDAT, F317, F323, and V325 in hNET and F335, F341, and V343 in hSERT were responsible for the TRI-binding selectivity. These findings provided important information for rational design of a single drug with better polypharmacological profiles through modulating multiple targets.


Asunto(s)
Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Sitios de Unión , Citalopram , Humanos , Simulación de Dinámica Molecular , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
8.
Phys Chem Chem Phys ; 23(20): 11717-11726, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33982037

RESUMEN

Tau misfolding plays a significant role in some neurodegenerative diseases such as Alzheimer's disease (AD). It is intrinsically disordered and highly soluble under normal physiological conditions. While the protein will aggregate to form paired helical filaments (PHFs) under copper homeostasis at pathological conditions, which is the main substance of neurofibrillary tangles (NFTs) in the brain of AD patients. However, the molecular mechanism underlying the copper (Cu2+) ion-induced tau misfolding is not fully understood. In this study, using the 1/2 third repeat fragment (R3 peptide) of tau protein (residues 318-335: VTSKCGSLGNIHHKPGGG) as a model, a Gaussian accelerated molecular dynamics (GaMD) method followed by efficient trajectory analysis was carried out to investigate the influences of Cu2+ on the tau about the protein fold and the free energy landscape along the simulation. The two-dimensional potential of mean force (PMF) profiles obtained from reweighting of the GaMD simulations as well as clustering analysis revealed the Cu2+ ion induced α-helix fold R3 peptide located at the low-energy wells of free energy map, which is in agreement with the reported experimental result. In contrast, there is no α-helix fold of R3 peptide that appeared during the GaMD simulation without Cu2+ ion existing. Furthermore, the definition of secondary structure of protein (DSSP) analysis indicated that the R3 peptide with Cu2+ ion forms a stable structure of the helix (Lys321-His330 interval of the peptide) at between 400 and 500 ns. Therefore, the structures and free energy profiles from GaMD simulations proposed that Cu2+ triggers the aggregation of R3 peptide into toxic PHFs through a stable α-helix fold form.


Asunto(s)
Cobre/química , Simulación de Dinámica Molecular , Péptidos/química , Proteínas tau/química , Iones/química , Conformación Proteica , Pliegue de Proteína , Relaxina
9.
Phys Chem Chem Phys ; 20(9): 6606-6616, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29451287

RESUMEN

Amitifadine, the only drug ever clinically tested in Phase 3 for treating depression, is a triple reuptake inhibitor (TRI) that simultaneously interacts with human monoamine transporters (MATs) including hSERT, hNET and hDAT. This novel multi-target strategy improves drug efficacy and reduces the toxic side effects of drugs. However, the binding modes accounting for amitifadine's polypharmacological mode of action are still elusive, and extensive exploration of the amitifadine-target interactions between amitifadine and MATs is urgently needed. In this study, a total of 0.63 µs molecular dynamics (MD) simulations with an explicit solvent as well as endpoint binding free energy (BFE) calculation were carried out. MD simulation results identified a shared binding mode involving eleven key residues at the S1 site of MATs for the binding of amitifadine, and the results of the BFE calculations were in good agreement with experimental reports. Moreover, by analyzing the per-residue energy contribution variation at the S1 site of three MATs and additional cross-mutagenesis simulations, the variation in the inhibition ratio of amitifadine between hSERT and two other MATs was discovered to mainly come from non-conserved residues (Y95, I172 and T439 in hNET and Y95, I172, A169 and T439 in hDAT). As the rational inhibition ratio of multi-target drugs among various therapeutic targets was found to be the key to their safety and tolerance, the findings of this study may further facilitate the rational design of more potent but less toxic multi-target antidepressant drugs.


Asunto(s)
Antidepresivos/metabolismo , Compuestos Aza/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Antidepresivos/química , Antidepresivos/uso terapéutico , Compuestos Aza/química , Compuestos Aza/uso terapéutico , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Análisis por Conglomerados , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/patología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Humanos , Simulación de Dinámica Molecular , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA