Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(27): e2207672, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537642

RESUMEN

HACE1 is an ankyrin repeat (AKR) containing HECT-type E3 ubiquitin ligase that interacts with and ubiquitinates multiple substrates. While HACE1 is a well-known tumor suppressor, its structure and mode of ubiquitination are not understood. The authors present the cryo-EM structures of human HACE1 along with in vitro functional studies that provide insights into how the enzymatic activity of HACE1 is regulated. HACE1 comprises of an N-terminal AKR domain, a middle (MID) domain, and a C-terminal HECT domain. Its unique G-shaped architecture interacts as a homodimer, with monomers arranged in an antiparallel manner. In this dimeric arrangement, HACE1 ubiquitination activity is hampered, as the N-terminal helix of one monomer restricts access to the C-terminal domain of the other. The in vitro ubiquitination assays, hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis, mutagenesis, and in silico modeling suggest that the HACE1 MID domain plays a crucial role along with the AKRs in RAC1 substrate recognition.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Humanos , Ubiquitina-Proteína Ligasas/genética , Dimerización , Ubiquitinación , Ubiquitina/metabolismo
2.
Life Sci Alliance ; 5(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34750241

RESUMEN

Metallocarboxypeptidases play critical roles in the development of mosquitoes and influence pathogen/parasite infection of the mosquito midgut. Here, we report the crystal structure of Aedes aegypti procarboxypeptidase B1 (PCPBAe1), characterized its substrate specificity and mechanism of binding to and inhibiting Dengue virus (DENV). We show that the activated PCPBAe1 (CPBAe1) hydrolyzes both Arg- and Lys-substrates, which is modulated by residues Asp251 and Ser239 Notably, these residues are conserved in CPBs across mosquito species, possibly required for efficient digestion of basic dietary residues that are necessary for mosquito reproduction and development. Importantly, we characterized the interaction between PCPBAe1 and DENV envelope (E) protein, virus-like particles, and infectious virions. We identified residues Asp18A, Glu19A, Glu85, Arg87, and Arg89 of PCPBAe1 are essential for interaction with DENV. PCPBAe1 maps to the dimeric interface of the E protein domains I/II (Lys64-Glu84, Val238-Val252, and Leu278-Leu287). Overall, our studies provide general insights into how the substrate-binding property of mosquito carboxypeptidases could be targeted to potentially control mosquito populations or proposes a mechanism by which PCPBAe1 binds to and inhibits DENV.


Asunto(s)
Aedes/enzimología , Aedes/virología , Carboxipeptidasa B/metabolismo , Virus del Dengue , Dengue/transmisión , Interacciones Microbiota-Huesped , Secuencia de Aminoácidos , Animales , Sitios de Unión , Carboxipeptidasa B/química , Carboxipeptidasa B/genética , Dominio Catalítico , Dengue/prevención & control , Dengue/virología , Virus del Dengue/fisiología , Control de Infecciones , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
3.
Biophys J ; 112(12): 2552-2566, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636912

RESUMEN

Spatiotemporal control of the cAMP signaling pathway is governed by both hormonal stimulation of cAMP generation by adenylyl cyclases (activation phase) and cAMP hydrolysis by phosphodiesterases (PDEs) (termination phase). The termination phase is initiated by PDEs actively targeting the protein kinase A (PKA) R-subunit through formation of a PDE-PKAR-cyclic adenosine monophosphate (cAMP) complex (the termination complex). Our results using PDE8 as a model PDE, reveal that PDEs mediate active hydrolysis of cAMP bound to its receptor RIα by enhancing the enzymatic activity. This accelerated cAMP turnover occurs via formation of a stable PDE8-RIα complex, where the protein-protein interface forms peripheral contacts and the central ligand cements this ternary interaction. The basis for enhanced catalysis is active translocation of cAMP from its binding site on RIα to the hydrolysis site on PDE8 through direct "channeling." Our results reveal cAMP channeling in the PDE8-RIα complex and a molecular description of how this channel facilitates processive hydrolysis of unbound cAMP. Thus, unbound cAMP maintains the PDE8-RIα complex while being hydrolyzed, revealing an undiscovered mode for amplification of PKA activity by cAMP-mediated sequestration of the R-subunit by PDEs. This novel regulatory mode explains the paradox of cAMP signal amplification by accelerated PDE-mediated cAMP turnover. This highlights how target effector proteins of small-molecule ligands can promote enzyme-mediated ligand hydrolysis by scaffolding effects. Enhanced activity of the PDE8-RIα complex facilitates robust desensitization, allowing the cell to respond to dynamic levels of cAMP rather than steady-state levels. The PDE8-RIα complex represents a new class of PDE-based complexes for specific drug discovery targeting the cAMP signaling pathway.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Medición de Intercambio de Deuterio , Escherichia coli , Polarización de Fluorescencia , Hidrólisis , Cinética , Espectrometría de Masas , Hidrolasas Diéster Fosfóricas/química , Estabilidad Proteica , Transducción de Señal , Espectrometría de Fluorescencia
4.
Sci Rep ; 6: 37061, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845431

RESUMEN

Aminoglycosides are broad-spectrum antibiotics that bind to the 30S ribosomal subunit (30S) of bacteria and disrupt protein translation. NpmA, a structurally well-characterized methyltransferase identified in an E. coli clinical isolate, catalyzes methylation of 30S at A1408 of the 16S rRNA and confers aminoglycoside resistance. Using sucrose cushion centrifugation and isothermal titration calorimetry, we first confirmed the binding between NpmA and 30S. Next, we performed amide Hydrogen/Deuterium Exchange Mass Spectrometry (HDXMS) of apo NpmA and in the presence and absence of SAM/SAH. We observed that ligand binding resulted in time-dependent differences in deuterium exchange not only at the ligand-binding pocket (D25-D55 and A86-E112) but also in distal regions (F62-F82 and Y113-S144) of NpmA. These results provide insights into methylation group donor cofactor-mediated allostery in NpmA in the ligand-bound states, which could not be observed in the static endpoint crystal structures. We predict that the two distal sites in NpmA form part of the allosteric sites that importantly are part of the main 16S rRNA binding interface. Thus HDXMS helped uncover allosteric communication relays that couple SAM/SAH binding sites with the ribosome-binding site. This highlights how HDXMS together with X-ray crystallography can provide important allosteric insights in protein-ligand complexes.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Metiltransferasas/química , S-Adenosilhomocisteína/química , S-Adenosilmetionina/química , Sitios de Unión , Medición de Intercambio de Deuterio , Proteínas de Escherichia coli/metabolismo , Ligandos , Espectrometría de Masas , Metiltransferasas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo
5.
Biophys J ; 109(6): 1251-63, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26276689

RESUMEN

The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , AMP Cíclico/metabolismo , Proteínas Protozoarias/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/química , Regulación Alostérica , Sitios de Unión , Calorimetría , AMP Cíclico/química , Dictyostelium , Escherichia coli , Cinética , Espectrometría de Masas , Conformación Proteica , Desplegamiento Proteico , Proteínas Protozoarias/química , Receptores de AMP Cíclico/química , Receptores de AMP Cíclico/metabolismo , Transducción de Señal
6.
Biophys J ; 107(6): 1426-40, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25229150

RESUMEN

Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/química , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Dominio Catalítico , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal , Secuencia Conservada , Humanos , Simulación del Acoplamiento Molecular
7.
Gut Pathog ; 4(1): 10, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23006537

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is a zoonotic pathogen, a very slow growing bacterium which is difficult to isolate and passage in conventional laboratory culture. Although its association with Johne's disease or paratuberculosis of cattle is well established, it has been only putatively linked to Crohn's disease in humans. Further, MAP has been recently suggested to be a trigger for other autoimmune diseases such as type-1 diabetes mellitus (T1DM). Recently, some studies have indicated that exposure to MAP is associated with elevated levels of antibodies against MAP lysate although the exact mechanism and significance of the same remains unclear. Further, the cytokine profiles relevant in MAP associated diseases of humans and their exact role in the pathophysiology are not clearly known. We performed in vitro cytokine analyses after exposing different cultured human cells to the whole cell lysate of MAP and found that MAP lysate induces secretion of cytokines IL-1ß, IL-6, IL-8, IL-10 and TNF-α by human peripheral blood mononuclear cells (PBMCs). Also, it induces secretion of IL-8 by cultured human stomach adenocarcinoma cells (AGS) and PANC-1(human pancreatic carcinoma cell line) cells. We also found that MAP lysate induced cytotoxicity in PANC-1cells. Collectively, these results provide a much needed base-line data set of cytokines broadly signifying a MAP induced cellular response by human cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA