Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Front Chem ; 12: 1460384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403698

RESUMEN

A novel analogue of hybrid spirooxindoles was synthesized employing a systematic multistep synthetic approach. The synthetic protocol was designed to obtain a series of spirooxindole derivatives incorporating triazolyl-s-triazine framework via [3 + 2] cycloaddition (32CA) reaction of azomethine ylide (AY) with the corresponding chalcones (6a-d). Unexpectedly, the reaction underwent an alternate route, leading to the cleavage of the s-triazine moiety and yielding a series of spirooxindole derivatives incorporating a triazole motif. A comprehensive investigation of the 32CA reaction mechanism was conducted using Molecular Electron Density Theory (MEDT). The viability of all compounds was evaluated through an MTT assay, and the IC50 values were determined using Prism Software. The antiproliferative efficacy of the synthesized chalcones and the corresponding spirooxindole derivatives was assessed against two cancer cell lines: MDA-MB-231 (triple-negative breast cancer) and HepG2 (human hepatoma). These findings were compared with Sorafenib, which was used as a positive control. The results revealed that chalcones (6c and 6d) were the most active among the tested chalcones, with IC50 values of 7.2 ± 0.56 and 7.5 ± 0.281 µM for (6c) and of 11.1 ± 0.37 and 11.0 ± 0.282 µM for (6d), against MDA-MB-231 and HepG2, respectively. Spirooxindoles (9b, 9c, 9h, and 9i) exhibited the highest activity with IC50 values ranging from 16.8 ± 0.37 µM to 31.3 ± 0.86 µM against MDA-MB-231 and 13.5 ± 0.92 µM to 24.2 ± 0.21 µM against HepG2. In particular, spirooxindole derivatives incorporating 2,4-dichlorophenyl moiety were the most active, with an IC50 of 16.8 ± 0.37 µM for (9h) against MDA-MB-23 and 13.5 ± 0.92 µM for (9i) against HepG2. Interestingly, the IC50 of compound (6c) (7.2 µM) exhibited better activity than that of Sorafenib (positive control) (9.98 µM) against MDA-MB-231. Molecular docking, ADMET, and molecular dynamic simulations were conducted for the promising candidates (6b, 6c, and 9h) to explore their binding affinity in the EGFR active site.

2.
Phys Chem Chem Phys ; 26(22): 16139-16152, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38787638

RESUMEN

Cyclin-dependent kinase 2 (CDK2) regulates cell cycle checkpoints in the synthesis and mitosis phases and plays a pivotal role in cancerous cell proliferation. The activation of CDK2, influenced by various protein signaling pathways, initiates the phosphorylation process. Due to its crucial role in carcinogenesis, CDK2 is a druggable hotspot target to suppress cancer cell proliferation. In this context, several studies have identified spirooxindoles as an effective class of CDK2 inhibitors. In the present study, three spirooxindoles (SOI1, SOI2, and SOI3) were studied to understand their inhibitory mechanism against CDK2 through a structure-based approach. Molecular docking and molecular dynamics (MD) simulations were performed to explore their interactions with CDK2 at the molecular level. The calculated binding free energy for the spirooxindole-based CDK2 inhibitors aligned well with experimental results regarding CDK2 inhibition. Energy decomposition (ED) analysis identified key binding residues, including I10, G11, T14, R36, F82, K89, L134, P155, T158, Y159, and T160, in the CDK2 active site and T-loop phosphorylation. Molecular mechanics (MM) energy was identified as the primary contributor to stabilizing inhibitor binding in the CDK2 protein structure. Furthermore, the analysis of binding affinity revealed that the inhibitor SOI1 binds more strongly to CDK2 compared to the other inhibitors under investigation. It demonstrated a robust interaction with the crucial residue T160 in the T-loop phosphorylation site, responsible for kinase activation. These insights into the inhibitory mechanism are anticipated to contribute to the development of potential CDK2 inhibitors using the spirooxindole scaffold.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina , Indoles , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Oxindoles , Inhibidores de Proteínas Quinasas , Compuestos de Espiro , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Oxindoles/química , Oxindoles/farmacología , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Indoles/química , Indoles/farmacología , Termodinámica , Relación Estructura-Actividad , Estructura Molecular , Unión Proteica , Espirooxindoles
3.
Sci Rep ; 14(1): 9398, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658642

RESUMEN

Free Fatty Acid Receptor 4 (FFAR4), a G-protein-coupled receptor, is responsible for triggering intracellular signaling pathways that regulate various physiological processes. FFAR4 agonists are associated with enhancing insulin release and mitigating the atherogenic, obesogenic, pro-carcinogenic, and pro-diabetogenic effects, normally associated with the free fatty acids bound to FFAR4. In this research, molecular structure-based machine-learning techniques were employed to evaluate compounds as potential agonists for FFAR4. Molecular structures were encoded into bit arrays, serving as molecular fingerprints, which were subsequently analyzed using the Bayesian network algorithm to identify patterns for screening the data. The shortlisted hits obtained via machine learning protocols were further validated by Molecular Docking and via ADME and Toxicity predictions. The shortlisted compounds were then subjected to MD Simulations of the membrane-bound FFAR4-ligand complexes for 100 ns each. Molecular analyses, encompassing binding interactions, RMSD, RMSF, RoG, PCA, and FEL, were conducted to scrutinize the protein-ligand complexes at the inter-atomic level. The analyses revealed significant interactions of the shortlisted compounds with the crucial residues of FFAR4 previously documented. FFAR4 as part of the complexes demonstrated consistent RMSDs, ranging from 3.57 to 3.64, with minimal residue fluctuations 5.27 to 6.03 nm, suggesting stable complexes. The gyration values fluctuated between 22.8 to 23.5 nm, indicating structural compactness and orderliness across the studied systems. Additionally, distinct conformational motions were observed in each complex, with energy contours shifting to broader energy basins throughout the simulation, suggesting thermodynamically stable protein-ligand complexes. The two compounds CHEMBL2012662 and CHEMBL64616 are presented as potential FFAR4 agonists, based on these insights and in-depth analyses. Collectively, these findings advance our comprehension of FFAR4's functions and mechanisms, highlighting these compounds as potential FFAR4 agonists worthy of further exploration as innovative treatments for metabolic and immune-related conditions.


Asunto(s)
Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Ligandos , Unión Proteica , Teorema de Bayes , Sitios de Unión
4.
Front Chem ; 12: 1364378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487783

RESUMEN

Cancer represents a global challenge, and the pursuit of developing new cancer treatments that are potent, safe, less prone to drug resistance, and associated with fewer side effects poses a significant challenge in cancer research and drug discovery. Drawing inspiration from pyrrolidinyl-spirooxindole natural products, a novel series of spirooxindoles has been synthesized through a one-pot three-component reaction, involving a [3 + 2] cycloaddition reaction. The cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231) and safety profile against WISH cells of the newly developed library were assessed using the MTT assay. Compounds 5l and 5o exhibited notable cytotoxicity against MCF-7 cells (IC50 = 3.4 and 4.12 µM, respectively) and MDA-MB-231 cells (IC50 = 8.45 and 4.32 µM, respectively) compared to Erlotinib. Conversely, compounds 5a-f displayed promising cytotoxicity against MCF-7 cells with IC50 values range (IC50 = 5.87-18.5 µM) with selective activity against MDA-MB-231 cancer cells. Compound 5g demonstrated the highest cytotoxicity (IC50 = 2.8 µM) among the tested compounds. Additionally, compounds 5g, 5l, and 5n were found to be safe (non-cytotoxic) against WISH cells with higher IC50 values ranging from 39.33 to 47.2 µM. Compounds 5g, 5l, and 5n underwent testing for their inhibitory effects against EGFR and CDK-2. Remarkably, they demonstrated potent EGFR inhibition, with IC50 values of 0.026, 0.067, and 0.04 µM and inhibition percentages of 92.6%, 89.8%, and 91.2%, respectively, when compared to Erlotinib (IC50 = 0.03 µM, 95.4%). Furthermore, these compounds exhibited potent CDK-2 inhibition, with IC50 values of 0.301, 0.345, and 0.557 µM and inhibition percentages of 91.9%, 89.4%, and 88.7%, respectively, in contrast to Roscovitine (IC50 = 0.556 µM, 92.1%). RT-PCR analysis was performed on both untreated and 5g-treated MCF-7 cells to confirm apoptotic cell death. Treatment with 5g increased the gene expression of pro-apoptotic genes P53, Bax, caspases 3, 8, and 9 with notable fold changes while decreasing the expression of the anti-apoptotic gene Bcl-2. Molecular docking and dynamic simulations (100 ns simulation using AMBER22) were conducted to investigate the binding mode of the most potent candidates, namely, 5g, 5l, and 5n, within the active sites of EGFR and CDK-2.

5.
Mol Divers ; 28(4): 1907-1924, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38305819

RESUMEN

Phosphoinositide 3-kinase alpha (PI3Kα) is one of the most frequently dysregulated kinases known for their pivotal role in many oncogenic diseases. While the side effects linked to existing drugs against PI3Kα-induced cancers provide an avenue for further research, the significant structural conservation among PI3Ks makes it extremely difficult to develop new isoform-selective PI3Kα inhibitors. Embracing this challenge, we herein designed a hybrid protocol by integrating machine learning (ML) with in silico drug-designing strategies. A deep learning classification model was developed and trained on the physicochemical descriptors data of known PI3Kα inhibitors and used as a screening filter for a database of small molecules. This approach led us to the prediction of 662 compounds showcasing appropriate features to be considered as PI3Kα inhibitors. Subsequently, a multiphase molecular docking was applied to further characterize the predicted hits in terms of their binding affinities and binding modes in the targeted cavity of the PI3Kα. As a result, a total of 12 compounds were identified whereas the best poses highlighted the efficiency of these ligands in maintaining interactions with the crucial residues of the protein to be targeted for the inhibition of associated activity. Notably, potential activity of compound 12 in counteracting PI3Kα function was found in a previous in vitro study. Following the drug-likeness and pharmacokinetic characterizations, six compounds (compounds 1, 2, 3, 6, 7, and 11) with suitable ADME-T profiles and promising bioavailability were selected. The mechanistic studies in dynamic mode further endorsed the potential of identified hits in blocking the ATP-binding site of the receptor with higher binding affinities than the native inhibitor, alpelisib (BYL-719), particularly the compounds 1, 2, and 11. These outcomes support the reliability of the developed classification model and the devised computational strategy for identifying new isoform-selective drug candidates for PI3Kα inhibition.


Asunto(s)
Aprendizaje Profundo , Simulación del Acoplamiento Molecular , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Diseño de Fármacos , Ligandos , Unión Proteica , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/química
6.
Comput Biol Chem ; 109: 108008, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198964

RESUMEN

Stercularin is a coumarin, isolated from the ethyl acetate fraction of stem bark and leaves of S. diversifolia. Pharmacologically it is active against cancer, diabetes, and inflammation etc. The molecule is further screened for in vitro pharmacological activities. In addition, a detailed description on its drug likeness and pharmacokinetic profile has been established to further explore its fate as a drug candidate. Stercularin exhibited antiglycation, immunomodulatory, and leishmanicidal activity in three different in vitro models. The IC50 values obtained in these three assays were 80.22 ± 0.46 mg/ml, 12.8 ± 1.6 µg/ml, and 8.32 ± 0.42 µg/ml, respectively. In case of drug likeness evaluation, Stercularin has acceptable physicochemical properties and compliant with major drug likeness descriptors i.e., Lipinski rule, Pfizer rule, GSK rule, and "golden triangle". Accepting Lipinski rule implies the oral drug development of Stercularin. Pharmacokinetically, Stercularin is permeable to Caco-2 and MDCK cell lines. 'Boiled-egg' plot suggest intestinal route of absorption, blood brain barrier nonpermeating, and not affected by p-glycoprotein. Stercularin has high plasma protein binding with low free fraction circulating in the plasma. Stercularin proved to be the substrate and/or inhibitor of CYP 450 system with a moderate half-life and clearance rate to allow flexible dosing regimen. Finally, slight risk of toxicity exists for Stercularin, but not being limiting factors of drug knock out. A nature isolated Stercularin possess pharmacological activities and is predicted to have acceptable pharmacokinetic profile. Further drug development and in vivo studies are desirable for optimization.


Asunto(s)
Sterculia , Humanos , Células CACO-2 , Barrera Hematoencefálica
7.
Med Chem ; 20(4): 443-451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38279758

RESUMEN

BACKGROUND: Non-Hodgkin lymphoma of B cell origin is the common type of lymphoma- related malignancy with poor response rate with conventional front-line therapies. AIM: The aim of the present study was to investigate the potential of new anti-inflammatory oxadiazole derivatives of Diclofenac as an anti-lymphoma agent through in vitro and in silico approaches. METHODS: Anti-lymphoma potential was evaluated by alamar blue technique. MTT assay employed for cytotoxicity. Gene and protein expression studies was performed by qRT-PCR and ELISA respectively. Docking studies was performed by using MOE program. RESULTS: Among five diclofenac derivatives, (II) showed promising anti-lymphoma effects, where it inhibited the expression of BCL-2, p-38 MAPK and TGF-ß in both follicular and Burkitt's lymphoma cells and was non-toxic against normal human fibroblast cells. The in silico studies against BCL-2 revealed that the unsubstituted Sulphur group in (II) is involved in the crucial interactions with the binding site residue. CONCLUSION: The compound (II) can be a potential therapeutic candidate for B-cell non-Hodgkin lymphoma and deserves further development as a novel anti-lymphoma agent.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diclofenaco , Simulación del Acoplamiento Molecular , Oxadiazoles , Humanos , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Diclofenaco/farmacología , Diclofenaco/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral , Simulación por Computador , Estructura Molecular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Biomol Struct Dyn ; 42(7): 3630-3640, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37216319

RESUMEN

Interleukin-2-inducible T-cell kinase (ITK) is a crucial intracellular signaling mediator in normal and malignant T-cells and natural killer cells. Selective inhibition of ITK might be useful for treating a variety of disorders including; autoimmune, inflammatory, and neoplastic disorders. Over the past two decades, the clinical management of ITK inhibitors has progressed dramatically. So far, specific inhibitor with no off-target effects against ITK is available. Herein, we aim to discover potential virtual hits to fasten the process of drug design and development against ITK. In this regard, the key chemical characteristics of ITK inhibitors were identified using ligand-based pharmacophore modeling. The validated pharmacophore comprises one hydrogen bond donor and three hydrogen bond acceptors and was utilized as a 3D query in virtual screening using ZINC, Covalent, and in-house databases. A total of 12 hit compounds were chosen on the basis of their critical interactions with the significant amino acids of ITK. The orbital energies such as HOMO and LUMO of the hit compounds were calculated to evaluate the inhibitor's potencies. Further, molecular dynamics simulation demonstrated the stability of ITK upon binding of selected virtual hits. Binding energy using the MMGBSA method showed the potential binding affinity of all the hits with ITK. The research identifies key chemical characteristics with geometric restrictions that lead to ITK inhibition.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Interleucina-2 , Ligandos , Simulación de Dinámica Molecular , Diseño de Fármacos , Simulación del Acoplamiento Molecular
9.
J Enzyme Inhib Med Chem ; 38(1): 2281260, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37994663

RESUMEN

Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-b]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton via cost-effective one-pot multicomponent [3 + 2] cycloaddition reaction. Absolute configuration was assigned by single crystal x-ray diffraction analysis and reaction mechanism was studied by Molecular Electron Density Theory. Initial MTT screening of the series against A549 cells and normal lung fibroblasts Wi-38 elected 6b as the study hit regarding potency (IC50 = 54 nM) and safety (SI = 6.64). In vitro CDK2 inhibition assay revealed that 6b (IC50 = 177 nM) was comparable to roscovitine (IC50 = 141 nM). Docking and molecular dynamic simulations suggested that 6b was stabilised into CDK2 cavity by hydrophobic interactions with key aminoacids.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Quinasa 2 Dependiente de la Ciclina , Neoplasias Pulmonares , Humanos , Antineoplásicos/química , Bencimidazoles/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Quinoxalinas
10.
ACS Omega ; 8(23): 20550-20560, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323383

RESUMEN

This study aims to develop a nanodrug delivery system containing podophyllotoxin (PTOX), a known anticancer drug, loaded on graphene oxide (GO). The system's ability to inhibit α-amylase and α-glucosidase enzymes was also investigated. PTOX was isolated from Podophyllum hexandrum roots with a yield of 2.3%. GO, prepared by Hummer's method, was converted into GO-COOH and surface-mobilized using polyethylene glycol (PEG) (1:1) in an aqueous medium to obtain GO-PEG. PTOX was loaded on GO-PEG in a facile manner with a 25% loading ratio. All the samples were characterized using FT-IR spectroscopy, UV/visible spectroscopy, and scanning electron microscopy (SEM). In FT-IR spectral data, GO-PEG-PTOX exhibited a reduction in acidic functionalities and there was an appearance of the ester linkage of PTOX with GO. The UV/visible measurements suggested an increase of absorbance in 290-350 nm regions for GO-PEG, suggesting the successful drug loading on its surface (25%). GO-PEG-PTOX exhibited a rough, aggregated, and scattered type of pattern in SEM with distinct edges and binding of PTOX on its surface. GO-PEG-PTOX remained potent in inhibiting both α-amylase and α-glucosidase with IC50 values of 7 and 5 mg/mL, closer to the IC50 of pure PTOX (5 and 4.5 mg/mL), respectively. Owing to the 25% loading ratio and 50% release within 48 h, our results are much more promising. Additionally, the molecular docking studies confirmed four types of interactions between the active centers of enzymes and PTOX, thus supporting the experimental results. In conclusion, the PTOX-loaded GO nanocomposites are promising α-amylase- and α-glucosidase-inhibitory agents when applied in vitro and have been reported for the first time.

11.
Saudi Pharm J ; 31(2): 191-206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36942273

RESUMEN

Introduction: Ailanthus altissima is an indigenous plant known for various remedial properties. The present study aimed to evaluate the neuroprotective potential of methanolic extract Ailanthus altissima (AA) bark as current scientific trend is searching plant for neurodegenerative diseases, worldwide. Methodology: In in-vitro experiments, the AA was analyzed for phenols, flavonoids, antioxidative and cholinesterase inhibitory properties with subsequent detailed characterization for secondary metabolites. The in-vivo neurological effects were evaluated in rats through behavioral assessment for anxiety and memory after chronic administration (28 days) of 50-200 mg/kg of AA. At the end of behavior studies, isolated brains were biochemically tested to determine antioxidant enzyme activity. Results: AA was found rich in phenols/flavonoids and active in radical scavenging with the presence of 13 secondary metabolites in UHPLC-MS analysis. The AA yielded anxiolytic effects dose-dependently in the open field, light/dark and elevated-plus maze tests as animals significantly (P < 0.05 vs control group) preferred open arena, illuminated zone and exposed arms of maze. Similarly, the animals treated with AA showed significant (P < 0.05 vs amnesic group) increase in spontaneous alternation, discrimination index in y-maze, novel object recognition tests. Further, AA.Cr treated rats showed noticeably shorter escape latencies in Morris water maze tests.In biochemical analysis, the dissected brains AA treated rats showed reduced levels of AChE and malondialdehyde with increased levels of first-line antioxidant enzymes i.e. glutathione peroxidase and superoxide dismutase. These observed biological effects might be attributed to phenols and flavonoids constituents owned by AA. -The in-silico studies showed thatconessine and lophirone J phytocompounds have good blood-brain barrier permeability and interaction with AChE. Conclusion: The outcomes of this study validate that bark of Ailanthus altissima might work as a source of bioactive phytochemicals of neuroprotective potential.

12.
Int J Biol Macromol ; 230: 123428, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709803

RESUMEN

The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia. Its role in tumorigenesis suggests that selective BRD9 inhibitors may have therapeutic value in cancer therapy. Currently, there has been increasing interest in developing small molecules that can specifically target BRD9 or the closely related bromodomain protein BRD7. Available chemical probes will help to clarify biological functions of BRD9 and its potential for cancer therapy. Since the report of the first BRD9 inhibitor LP99 in 2015, numerous inhibitors have been developed. In this review, we summarized the biological roles of BRD9, structural details and the progress made in the development of BRD9 inhibitors.


Asunto(s)
Epigénesis Genética , Factores de Transcripción , Factores de Transcripción/metabolismo , Dominios Proteicos , Proliferación Celular
13.
J Biomol Struct Dyn ; 41(16): 8053-8067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36184737

RESUMEN

Cancer remains the leading cause of mortality and morbidity in the world, with 19.3 million new diagnoses and 10.1 million deaths in 2020. Cancer is caused due to mutations in proto-oncogenes and tumor-suppressor genes. Genetic analyses found that Ras (Rat sarcoma) is one of the most deregulated oncogenes in human cancers. The Ras oncogene family members including NRas (Neuroblastoma ras viral oncogene homolog), HRas (Harvey rat sarcoma) and KRas are involved in different types of human cancers. The mutant KRas is considered as the most frequent oncogene implicated in the development of lung, pancreatic and colon cancers. However, there is no efficient clinical drug even though it has been identified as an oncogene for 30 years. Therefore there is an emerging need to develop potent, new anticancer drugs. In this study, computer-aided drug designing approaches as well as experimental methods were employed to find new and potential anti-cancer drugs. The pharmacophore model was developed from an already known FDA approved anti-cancer drug Bortezomib using the software MOE. The validated pharmacophore model was then used to screen the in-house and commercially available databases. The pharmacophore-based virtual screening resulted in 26 and 86 hits from in-house and commercial databases respectively. Finally, 6/13 (in-house database) and 24/64 hits (commercial databases) were selected with different scaffolds having good interactions with the significant active residues of KRasG12D protein that were predicted as potent lead compounds. Finally, the results of pharmacophore-based virtual screening were further validated by molecular dynamics simulation analysis. The 6 hits of the in-house database were further evaluated experimentally. The experimental results showed that these compounds have good anti-cancer activity which validate the protocol of our in silico studies. KRasG12D protein is a very important anti-cancer target and potent inhibitors for this target are still not available, so small lead compound inhibitors were identified to inhibit the activity of this protein by blocking the GTP-binding pocket.Communicated by Ramaswamy H. Sarma.

14.
J Biomol Struct Dyn ; 41(19): 9344-9355, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36331082

RESUMEN

Monkeypox virus is an infectious agent that causes fever, Pneumonitis encephalitis, rash, lymphadenopathy and bacterial infection. The current outbreak of monkeypox has reawakened the global health concern. In the current situation of increasing viral infection, no vaccine or drug is available for monkeypox. Thus, there is an urgent need for viable vaccine development to prevent viral transmission by boosting human immunity. Herein, using immunoinformatics approaches, a multi-epitope vaccine was constructed for the Monkeypox virus. In this connection, B-Cell and T-cell epitopes were identified and joined with the help of adjutants and linkers. The vaccine construct was selected based on promising vaccine candidates and immunogenic potential. Further epitopes were selected based on antigenicity score, non-allergenicity and good immunological properties. Molecular docking reveals strong interactions between TLR-9 and the predicted vaccine construct. Finally, molecular dynamics simulations were performed to evaluate the stability and compactness of the constructed vaccine. The MD simulation results demonstrated the significant stability of the polypeptide vaccine construct. The predicted vaccine represented good stability, expression, immunostimulatory capabilities and significant solubility. Design vaccine was verified as efficient in different computer-based immune response investigations. Additionally, the constructed vaccine also represents a good population coverage in computer base analysis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mpox , Vacunas , Humanos , Simulación del Acoplamiento Molecular , Epítopos de Linfocito T , Simulación de Dinámica Molecular , Epítopos de Linfocito B , Vacunas de Subunidad , Biología Computacional
15.
Turk J Med Sci ; 53(5): 1045-1057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38813043

RESUMEN

Background: Levetiracetam (LEV) has been found to have an antihyperalgesic effect via acting on the adenosine system. However, the effects of LEV on the modulation of the adenosine system in the brain have not been elucidated in the prevention of seizures and epilepsy. The present study aimed to explore the possible LEV mechanisms of action in the adenosine signaling systems in an animal model of epilepsy. Methodology: A docking study was initially performed to determine the possible interaction of LEV with adenosine A1 receptors (A1Rs) and equilibrative nucleoside transporters-1 (ENT1). The experimental study was divided into an acute seizure test (32 mice distributed into 4 groups) and a chronic kindling model study (40 mice distributed into 5 groups), followed by gene expression analysis and immunohistochemistry. The kindling model lasted 26 days and took 13 subconvulsive doses of pentylenetetrazole (PTZ) to completely kindle the mice in the PTZ control group. Gene expression changes in the A1Rs, potassium inwardly-rectifying channel 3.2 (Kir3.2), and ENT1 in the brain tissue samples of the mice following treatment with LEV were analyzed using reverse transcription-quantitative polymerase chain reaction, and immunohistochemistry was performed for the A1R protein expression. Results: Docking studies predicted a significant interaction of LEV with A1Rs and ENT1 proteins. Results from the acute testing revealed that caffeine (100 mg/kg) and 8-cyclopentyl-1,3-dipropylxanthine (25 mg/kg) significantly reversed the antiseizure effects of LEV by reversing the percent protection and shortening the onset of the first myoclonic jerk (FMJ) and generalized clonic seizures (GCSs). In the PTZ-induced kindling, LEV demonstrated an increased gene expression of A1Rs and Kir3.2 in the brain. LEV also significantly reduced the gene expression of ENT1. Furthermore, the immunohistochemical analysis showed that LEV increased the protein expression of A1Rs in the brain. Conclusion: Based on these results, it can be concluded that LEV modulates epileptogenesis by acting on the adenosine pathway in the central nervous system.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia , Excitación Neurológica , Levetiracetam , Animales , Levetiracetam/farmacología , Ratones , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/farmacología , Excitación Neurológica/efectos de los fármacos , Masculino , Piracetam/farmacología , Piracetam/análogos & derivados , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A1/efectos de los fármacos , Receptor de Adenosina A1/genética , Pentilenotetrazol , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/genética
16.
Int Immunopharmacol ; 113(Pt B): 109421, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36403520

RESUMEN

Diabetes Mellitus is accompanied by chronic hyperglycemia, inflammation, and related molecular processes, which leads to diabetic neuropathy. In this work, we tested Thiadiazine-thione (TDT) synthetic derivatives TDT1 and TDT2 against streptozotocin (STZ)-induced diabetic neuropathy. Sprague Dawley's rats, SH-SY5Y neuronal and BV2 microglial cells were employed in this work, followed by behavioral, biochemical, and morphological studies utilizing RT-qPCR, ELISA, Immunoblotting, immunohistochemistry, Immunofluorescence, and in silico analyses. TDT1 and TDT2 abolished STZ-induced allodynia and hyperalgesia. Next, we examined IRS1/PI3K/AKT signaling to assess TDT1 and TDT2's impact on diabetic neuropathy. STZ downregulated IRS1, PI3K, AKT mRNA and protein expression in rat spinal cord and SH-SY5Y neuronal cells. TDT1 and TDT2 improved IRS1, PI3k, and AKT mRNA and protein expression. STZ elevated GSK3ß mRNA and protein expression in vivo and in vitro, whereas TDT1 and TDT2 mitigated it. STZ increased the expression of inflammatory mediators such as p-NF-κB, TNF-α, and COX-2 in rat spinal cord lysates. TDT1 and TDT2 co-treatment with STZ decreased inflammatory cytokine expression by ameliorating astrocytosis (revealed by increased GFAP) and microgliosis (indicated by increased Iba1). TDT1 and TDT2 reduced STZ-induced JNK, Iba1, and COX-2 upregulation in BV2 microglial cells validating our in vivo findings. In silico molecular docking and MD simulations analyses suggested that TDT1 and TDT2 have IRS binding affinity, however, both compounds had an identical binding affinity, but distinct interaction pattern with IRS protein residues. Overall, these findings demonstrate that TDT derivatives mitigated STZ-induced neuropathy through modulating the insulin and inflammatory signaling pathways.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Neuroblastoma , Tiadiazinas , Humanos , Ratas , Animales , Insulina , Estreptozocina , Ratas Sprague-Dawley , Tionas , Neuropatías Diabéticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero
17.
Molecules ; 27(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431887

RESUMEN

Currently the discovery and development of potent ß-glucuronidase inhibitors is an active area of research due to the observation that increased activity of this enzyme is associated with many pathological conditions, such as colon cancer, renal diseases, and infections of the urinary tract. In this study, twenty-seven 2-aminopyrimidine derivatives 1-27 were synthesized by fusion of 2-amino-4,6-dichloropyrimidine with a variety of amines in the presence of triethylamine without using any solvent and catalyst, in good to excellent yields. All synthesized compounds were characterized by EI-MS, HREI-MS and NMR spectroscopy. Compounds 1-27 were then evaluated for their ß-glucuronidase inhibitory activity, and among them, compound 24 (IC50 = 2.8 ± 0.10 µM) showed an activity much superior to standard D-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 µM). To predict the binding mode of the substrate and ß-glucuronidase, in silico study was performed. Conclusively, this study has identified a potent ß-glucuronidase inhibitor that deserves to be further studied for the development of pharmaceutical products.


Asunto(s)
Inhibidores Enzimáticos , Glucuronidasa , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/química , Glucuronidasa/metabolismo
18.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362300

RESUMEN

Bromodomain-containing protein 9 (BRD9), a member of the bromodomain and extra terminal domain (BET) protein family, works as an epigenetic reader. BRD9 has been considered an essential drug target for cancer, inflammatory diseases, and metabolic disorders. Due to its high similarity among other isoforms, no effective treatment of BRD9-associated disorders is available. For the first time, we performed a detailed comparative analysis among BRD9, BRD7, and BRD4. The results indicate that residues His42, Gly43, Ala46, Ala54, Val105, and Leu109 can confer the BRD9 isoform selectivity. The predicted crucial residues were further studied. The pharmacophore model's features were precisely mapped with some key residues including, Gly43, Phe44, Phe45, Asn100, and Tyr106, all of which play a crucial role in BRD9 inhibition. Docking-based virtual screening was utilized with the consideration of the conserved water network in the binding cavity to identify the potential inhibitors of BRD9. In this workflow, 714 compounds were shortlisted. To attain selectivity, 109 compounds were re-docked to BRD7 for negative selection. Finally, four compounds were selected for molecular dynamics studies. Our studies pave the way for the identification of new compounds and their role in causing noticeable, functional differences in isoforms and between orthologues.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos
19.
ACS Omega ; 7(28): 24858-24870, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874229

RESUMEN

Here, we synthesized a newseries of mono- and bis(dimethylpyrazolyl)-s-triazine derivatives. The synthetic methodology involved the reaction of different mono- and dihydrazinyl-s-triazine derivatives with acetylacetone in the presence of triethylamine to produce the corresponding target products in high yield and purity. The antiproliferative activity of the novel mono- and bis(dimethylpyrazolyl)-s-triazine derivatives was studied against three cancer cell lines, namely, MCF-7, HCT-116, and HepG2. N-(4-Bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine 4f, N-(4-chlorophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine 5c, and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine 5d showed promising activity against these cancer cells: 4f [(IC50 = 4.53 ± 0.30 µM (MCF-7); 0.50 ± 0.080 µM (HCT-116); and 3.01 ± 0.49 µM (HepG2)]; 5d [(IC50 = 3.66 ± 0.96 µM (HCT-116); and 5.42 ± 0.82 µM (HepG2)]; and 5c [(IC50 = 2.29 ± 0.92 µM (MCF-7)]. Molecular docking studies revealed good binding affinity with the receptor targeting EGFR/PI3K/AKT/mTOR signaling cascades. Compound 4f exhibited potent EGFR inhibitory activity with an IC50 value of 61 nM compared to that of Tamoxifen (IC50 value of 69 nM), with EGFR inhibition of 83 and 84%, respectively, at a concentration of 10 µM. Interestingly, 4f showed remarkable PI3K/AKT/mTOR inhibitory activity with 0.18-, 0.27-, and 0.39-fold decrease in their concentration (reduction in controls from 6.64, 45.39, and 86.39 ng/mL to 1.24, 12.35, and 34.36 ng/mL, respectively). Hence, the synthetic 1,3,5-triazine derivative 4f exhibited promising antiproliferative activity in HCT-116 cells through apoptosis induction by targeting the EGFR and its downstream pathway.

20.
Biomed Res Int ; 2022: 6865472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865666

RESUMEN

Betamethasone is an important glucocorticoids (GCs), frequently used to cure allergies (such as asthma and angioedema), Crohn's disease, skin diseases (such as dermatitis and psoriasis), systemic lupus erythematosus, rheumatic disorders, and leukemia. Present investigation deals to find potential agonist of glucocorticoid receptors after biotransformation of betamethasone dipropionate (1) and to carry out the molecular docking and ADME analyses. Biotransformation of 1 was carried out with Launaea capitata (dandy) roots and Musa acuminate (banana) leaves. M. acuminate furnished low-cost value-added products such as Sananone dipropionate (2) in 5% yields. Further, biocatalysis of Sananone dipropionate (2) with M. acuminate gave Sananone propionate (3) and Sananone (4) in 12% and 7% yields, respectively. However, Sananone (4) was obtained in 37% yields from Launaea capitata. Compound 5 was obtained in 11% yield after ß-elimination of propionic acid at C-17 during oxidation of compound 1. The structure elucidation of new compounds 2-5 was accomplished through combined use of X-ray diffraction and NMR (1D and 2D) studies. In addition to this, molecular docking and ADME analyses of all transformed products of 1 were also done. Compounds 1-5 showed -12.53 to -10.11 kcal/mol potential binding affinity with glucocorticoid receptor (GR) and good ADME profile. Moreover, all the compounds showed good oral bioavailability with the octanol/water partition coefficient in the range of 2.23 to 3.65, which indicated that compounds 1-5 were in significant agreement with the given criteria to be considered as drug-like.


Asunto(s)
Fármacos Dermatológicos , Psoriasis , Betametasona/análogos & derivados , Biotransformación , Fármacos Dermatológicos/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Psoriasis/tratamiento farmacológico , Receptores de Glucocorticoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA