Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Med ; 23(9): 1046-1054, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28805821

RESUMEN

It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood. Here we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial cancer-associated SPOP mutants. The resulting reduction of BET protein levels sensitized cancer cells to BET inhibitors. Conversely, prostate cancer-specific SPOP mutations resulted in impaired degradation of BETs, promoting their resistance to pharmacologic inhibition. These results uncover an oncogenomics paradox, whereby mutations mapping to the same domain evoke opposing drug susceptibilities. Specifically, we provide a molecular rationale for the use of BET inhibitors to treat patients with endometrial but not prostate cancer who harbor SPOP mutations.


Asunto(s)
Adenocarcinoma de Células Claras/genética , Carcinoma Endometrioide/genética , Carcinosarcoma/genética , Neoplasias Endometriales/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Acetanilidas/farmacología , Adenocarcinoma de Células Claras/metabolismo , Animales , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Carcinoma Endometrioide/metabolismo , Carcinosarcoma/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatografía Liquida , Proteínas Cullin/metabolismo , Resistencia a Antineoplásicos , Neoplasias Endometriales/metabolismo , Epigénesis Genética , Femenino , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Masculino , Espectrometría de Masas , Ratones Desnudos , Terapia Molecular Dirigida , Mutación , Trasplante de Neoplasias , Neoplasias Quísticas, Mucinosas y Serosas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Ubiquitinación
2.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 62-75, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27756573

RESUMEN

The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Complejos Multiproteicos/genética , Músculo Esquelético/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Mecánico , Serina-Treonina Quinasas TOR/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Fenómenos Biomecánicos , Línea Celular , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Filaminas/genética , Filaminas/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Músculo Esquelético/citología , Miocitos del Músculo Liso/ultraestructura , Unión Proteica , Biosíntesis de Proteínas , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Autophagy ; 11(3): 538-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714469

RESUMEN

Chaperone-assisted selective autophagy (CASA) is a tension-induced degradation pathway essential for muscle maintenance. Impairment of CASA causes childhood muscle dystrophy and cardiomyopathy. However, the importance of CASA for muscle function in healthy individuals has remained elusive so far. Here we describe the impact of strength training on CASA in a group of healthy and moderately trained men. We show that strenuous resistance exercise causes an acute induction of CASA in affected muscles to degrade mechanically damaged cytoskeleton proteins. Moreover, repeated resistance exercise during 4 wk of training led to an increased expression of CASA components. In human skeletal muscle, CASA apparently acts as a central adaptation mechanism that responds to acute physical exercise and to repeated mechanical stimulation.


Asunto(s)
Adaptación Fisiológica , Autofagia/fisiología , Chaperonas Moleculares/fisiología , Músculo Cuádriceps/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Proteínas Reguladoras de la Apoptosis/metabolismo , Biopsia , Creatina Quinasa/metabolismo , Citoesqueleto/metabolismo , Filaminas/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica , Contracción Muscular , Músculo Cuádriceps/patología , Músculo Cuádriceps/ultraestructura , Adulto Joven
4.
Commun Integr Biol ; 6(4): e24925, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23986815

RESUMEN

Maintaining the dynamic proteome of a living cell in the face of an ever-changing environment depends on a fine-tuned balance of protein synthesis and protein degradation. Molecular chaperones exert key functions during protein homeostasis (proteostasis). They associate with nonnative client proteins following synthesis or damage and facilitate client sorting and folding. When client proteins are terminally misfolded, chaperones cooperate with protein degradation systems to dispose of such clients. This dual proteostasis activity of chaperones is essential for maintaining cell function under normal growth conditions and becomes even more important under stress conditions such as heat and oxidative stress. The recent identification of chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway highlights the critical role of molecular chaperones in mechanically strained cells and tissues. The CASA complex, assembled by the cochaperone BAG3, coordinates protein degradation and protein synthesis in response to mechanical force. Here we describe the composition and function of this chaperone complex in mammals and discuss its relevance for tissue homeostasis and the regulation of cell adhesion, migration and proliferation. We provide a unifying concept for the function of BAG3, which integrates its involvement in muscle maintenance, tumor formation and virus infection.

5.
Curr Biol ; 23(5): 430-5, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23434281

RESUMEN

Mechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood. Here, we identify chaperone-assisted selective autophagy (CASA) as a tension-induced autophagy pathway essential for mechanotransduction in muscle and immune cells. The CASA complex, comprised of the molecular chaperones Hsc70 and HspB8 and the cochaperone BAG3, senses the mechanical unfolding of the actin-crosslinking protein filamin. Together with the chaperone-associated ubiquitin ligase CHIP, the complex initiates the ubiquitin-dependent autophagic sorting of damaged filamin to lysosomes for degradation. Autophagosome formation during CASA depends on an interaction of BAG3 with synaptopodin-2 (SYNPO2). This interaction is mediated by the BAG3 WW domain and facilitates cooperation with an autophagosome membrane fusion complex. BAG3 also utilizes its WW domain to engage in YAP/TAZ signaling. Via this pathway, BAG3 stimulates filamin transcription to maintain actin anchoring and crosslinking under mechanical tension. By integrating tension sensing, autophagosome formation, and transcription regulation during mechanotransduction, the CASA machinery ensures tissue homeostasis and regulates fundamental cellular processes such as adhesion, migration, and proliferation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Mecanotransducción Celular , Chaperonas Moleculares/metabolismo , Aciltransferasas , Animales , Proteínas Reguladoras de la Apoptosis , Humanos , Células Jurkat , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Ratas , Estrés Mecánico , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA