Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838442

RESUMEN

In this study, the performance characteristics of hemp shives impregnated with linseed oil and tung tree oil (HS)- and corn starch (CS)-based biocomposites containing flame retardants were evaluated before and after treatment with the mixture of bacterium Pseudomonas putida and fungus Rhizopus oryzae. Enzymatic activities and physical-mechanical properties such as water absorption, thickness swelling, compressive strength, and thermal conductivity were tested to evaluate the suitability of selected composites for thermal insulation purposes. In addition, electron microscopy was used to investigate the impact of microorganisms on the microstructure of the material. It was determined that the type of oil used for impregnation significantly affects the properties of biocomposites after 6 months of incubation with mixture of bacterium P. putida and fungus Rh. oryzae. Biocomposites impregnated with linseed oil and after treatment with a mixture of microorganisms had cellulase activity of 25 U/mL, endo ß-1-4-glucanase activity of 26 U/mL, lipase activity of 101 U/mL, only a 10% decrease in compressive strength, 50% higher short-term water absorption, unchanged swelling in thickness, and slightly decreased thermal conductivity compared to control biocomposites. At the same time, biocomposites with tung tree oil had a much more pronounced deterioration of the properties tested, cellulase activity of 28 U/mL, endo ß-1-4-glucanase activity of 37 U/mL, lipase activity of 91 U/mL, two times lower compressive strength and two times higher short-term water absorption, 2.5 times greater thickness swelling, and a slightly increased thermal conductivity. We conclude that linseed oil provides better protection against the action of microorganisms compared to impregnation with tung tree oil.

2.
Talanta ; 234: 122657, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364466

RESUMEN

In this work, we report the construction of a direct electron transfer (DET) biosensor based on NAD-dependent formaldehyde dehydrogenase from Pseudomonas sp. (FDH) immobilized on the gold nanoparticle-modified gold electrode. To the best of our knowledge, a DET for FDH was achieved for the first time - the oxidation of formaldehyde started at a low electrode potential of -190 mV vs. Ag/AgCl and reached a maximum current density of 1100 nA cm-2 at 200 mV vs. Ag/AgCl. Also, the designed electrode was insensitive to substrate inhibition (in comparison to the free enzyme) and operated in solutions with formaldehyde concentrations up to 10 mM. The electrode was used and characterized as a mediatorless biosensor for the detection of formaldehyde. The biosensor demonstrated a limit of detection (0.05 mM), linear range from 0.25 to 2.0 mM, the sensitivity of 178.9 nA mM cm-2, high stability and selectivity. The biosensor has been successfully tested for the determination of added formaldehyde concentration in river water samples, thus the developed electrode could be applied for a fast, inexpensive and simple measurement of formaldehyde in various media.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Aldehído Oxidorreductasas , Electrodos , Electrones , Enzimas Inmovilizadas , Formaldehído , Oro , Ríos , Agua
3.
Angew Chem Int Ed Engl ; 60(1): 424-431, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32929873

RESUMEN

We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Šresolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.

4.
Materials (Basel) ; 13(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233460

RESUMEN

In this study, tung tree and linseed drying oils, as well as semi-drying hempseed oil, were analyzed as the protective coatings for biocomposite boards (BcB) made of hemp shives, corn starch binder, and the performance-enhancing additives. The hydrophobization coatings were formed at 40, 90, and 120 °C temperatures, respectively. The physical-mechanical properties such as the compressive strength, thermal conductivity, dimensional stability, water absorption, and swelling were tested. In addition, scanning electron microscopy (SEM) was employed for the analysis of the board microstructure to visualize the oil fills and impregnation in pores and voids. It was demonstrated that the compressive strength of oil-modified BcBs compared to uncoated BcBs (at 10% of relative deformation) increased by up to 4.5-fold and could reach up to 14 MPa, water absorption decreased up to 4-fold (from 1.34 to 0.37 kg/m2), swelling decreased up to 48% (from 8.20% to 4.26%), whereas the thermal conductivity remained unchanged with the thermal conductivity coefficient of around 0.085 W/m·K. Significant performance-enhancing properties were obtained due to the formation of a protective oil film when the tung tree oil was used.

5.
BMC Cancer ; 19(1): 197, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30832616

RESUMEN

BACKGROUND: The cytosine deaminase (CD)/5-fluorocytosine (5-FC) system is among the best explored enzyme/prodrug systems in the field of the suicide gene therapy. Recently, by the screening of the environmental metagenomic libraries we identified a novel isocytosine deaminase (ICD), termed Vcz, which is able of specifically converting a prodrug 5-fluoroisocytosine (5-FIC) into toxic drug 5-fluorouracil (5-FU). The aim of this study is to test the applicability of the ICD Vcz / 5-FIC pair as a potential suicide gene therapy tool. METHODS: Vcz-expressing human glioblastoma U87 and epithelial colorectal adenocarcinoma Caco-2 cells were treated with 5-FIC, and the Vcz-mediated cytotoxicity was evaluated by performing an MTT assay. In order to examine anti-tumor effects of the Vcz/5-FIC system in vivo, murine bone marrow-derived mesenchymal stem cells (MSC) were transduced with the Vcz-coding lentivirus and co-injected with 5-FIC or control reagents into subcutaneous GL261 tumors evoked in C57/BL6 mice. RESULTS: 5-FIC alone showed no significant toxic effects on U87 and Caco-2 cells at 100 µM concentration, whereas the number of cells of both cell lines that express Vcz cytosine deaminase gene decreased by approximately 60% in the presence of 5-FIC. The cytotoxic effects on cells were also induced by media collected from Vcz-expressing cells pre-treated with 5-FIC. The co-injection of the Vcz-transduced mesenchymal stem cells and 5-FIC have been shown to augment tumor necrosis and increase longevity of tumorized mice by 50% in comparison with control group animals. CONCLUSIONS: We have confirmed that the novel ICD Vcz together with the non-toxic prodrug 5-FIC has a potential of being a new enzyme/prodrug system for suicide gene therapy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Flucitosina/análogos & derivados , Fluorouracilo/farmacología , Genes Transgénicos Suicidas , Profármacos/farmacología , Adenocarcinoma , Animales , Antimetabolitos Antineoplásicos/metabolismo , Neoplasias Encefálicas , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Citosina/análogos & derivados , Citosina/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacología , Fluorouracilo/metabolismo , Terapia Genética , Vectores Genéticos , Glioblastoma , Humanos , Lentivirus , Células Madre Mesenquimatosas , Ratones , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , Profármacos/metabolismo
6.
Molecules ; 23(11)2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405065

RESUMEN

Ribose methylation is among the most ubiquitous modifications found in RNA. 2'-O-methyluridine is found in rRNA, snRNA, snoRNA and tRNA of Archaea, Bacteria, and Eukaryota. Moreover, 2'-O-methylribonucleosides are promising starting materials for the production of nucleic acid-based drugs. Despite the countless possibilities of practical use for the metabolic enzymes associated with methylated nucleosides, there are very few reports regarding the metabolic fate and enzymes involved in the metabolism of 2'-O-alkyl nucleosides. The presented work focuses on the cellular degradation of 2'-O-methyluridine. A novel enzyme was found using a screening strategy that employs Escherichia coli uracil auxotroph and the metagenomic libraries. A 2'-O-methyluridine hydrolase (RK9NH) has been identified together with an aldolase (RK9DPA)-forming a part of a probable gene cluster that is involved in the degradation of 2'-O-methylated nucleosides. The RK9NH is functional in E. coli uracil auxotroph and in vitro. The RK9NH nucleoside hydrolase could be engineered to enzymatically produce 2'-O-methylated nucleosides that are of great demand as raw materials for production of nucleic acid-based drugs. Moreover, RK9NH nucleoside hydrolase converts 5-fluorouridine, 5-fluoro-2'-deoxyuridine and 5-fluoro-2'-O-methyluridine into 5-fluorouracil, which suggests it could be employed in cancer therapy.


Asunto(s)
Hidrolasas/genética , Metagenómica , Uridina/análogos & derivados , Secuencia de Aminoácidos , Activación Enzimática , Escherichia coli/enzimología , Escherichia coli/genética , Evolución Molecular , Biblioteca de Genes , Hidrolasas/química , Hidrolasas/clasificación , Hidrolasas/metabolismo , Metagenoma , Metagenómica/métodos , Estructura Molecular , Filogenia , Análisis Espectral , Especificidad por Sustrato , Uridina/química , Uridina/metabolismo
7.
Front Microbiol ; 9: 2375, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349513

RESUMEN

Cytosine is one of the four letters of a standard genetic code, found both in DNA and in RNA. This heterocyclic base can be converted into uracil upon the action of the well-known cytosine deaminase. Isocytosine (2-aminouracil) is an isomer of cytosine, yet the enzymes that could convert it into uracil were previously mainly overlooked. In order to search for the isocytosine deaminases we used a selection strategy that is based on uracil auxotrophy and the metagenomic libraries, which provide a random pool of genes from uncultivated soil bacteria. Several genes that encode isocytosine deaminases were found and two respective recombinant proteins were purified. It was established that both novel deaminases do not use cytosine as a substrate. Instead, these enzymes are able to convert not only isocytosine into uracil, but also 5-fluoroisocytosine into 5-fluorouracil. Our findings suggest that novel isocytosine deaminases have a potential to be efficiently used in targeted cancer therapy instead of the classical cytosine deaminases. Use of isocytosine instead of cytosine would produce fewer side effects since deaminases produced by the commensal E. coli gut flora are ten times less efficient in degrading isocytosine than cytosine. In addition, there are no known homologs of isocytosine deaminases in human cells that would induce the toxicity when 5-fluoroisocytosine would be used as a prodrug.

8.
Environ Microbiol Rep ; 10(1): 49-56, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29194984

RESUMEN

Modified nucleotides are present in many RNA species in all Domains of Life. While the biosynthetic pathways of such nucleotides are well studied, much less is known about the degradation of RNAs and the return to the metabolism of modified nucleotides, their respective nucleosides or heterocyclic bases. Using an E. coli uracil auxotroph, we screened the metagenomic libraries for genes, which would allow the conversion of 2-thiouracil to uracil and thereby lead to the growth on a defined synthetic medium. We show that a gene encoding a protein consisting of previously uncharacterized Domain of Unknown Function 523 (DUF523) is responsible for such phenotype. We have purified this recombinant protein and demonstrated that it contains a FeS cluster. The substitution of cysteines, which have been predicted to form such clusters, with alanines abolished the growth phenotype. We conclude that DUF523 is involved in the conversion of 2-thiouracil into uracil in vivo.


Asunto(s)
Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Tiouracilo/metabolismo , Uracilo/metabolismo , Sustitución de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Biblioteca de Genes , Genes Bacterianos/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Hierro/metabolismo , Modelos Químicos , ARN/metabolismo , Microbiología del Suelo , Azufre/metabolismo
9.
Mol Microbiol ; 67(2): 323-35, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18069966

RESUMEN

The Pyrococcus abyssi genome displays two genes possibly coding for S-adenosyl-l-methionine-dependent RNA(uracil, C5)-methyltransferases (PAB0719 and PAB0760). Their amino acid sequences are more closely related to Escherichia coli RumA catalysing the formation of 5-methyluridine (m(5)U)-1939 in 23S rRNA than to E. coli TrmA (tRNA methyltransferase A) methylating uridine-54 in tRNA. Comparative genomic and phylogenetic analyses show that homologues of PAB0719 and PAB0760 occur only in a few Archaea, these genes having been acquired via a single horizontal gene transfer from a bacterial donor to the common ancestor of Thermococcales and Nanoarchaea. This transfer event was followed by a duplication event in Thermococcales leading to two closely related genes. None of the gene products of the two P. abyssi paralogues catalyses in vitro the formation of m(5)U in a P. abyssi rRNA fragment homologous to the bacterial RumA substrate. Instead, PAB0719 enzyme (renamed (Pab)TrmU54) displays an identical specificity to TrmA, as it catalyses the in vitro formation of m(5)U-54 in tRNA. Thus, during evolution, at least one of the two P. abyssi RumA-type enzymes has changed of target specificity. This functional shift probably occurred in an ancestor of all Thermococcales. This study also provides new evidence in favour of a close relationship between Thermococcales and Nanoarchaea.


Asunto(s)
Archaea/enzimología , Archaea/genética , Proteínas Bacterianas/genética , Transferencia de Gen Horizontal , ARNt Metiltransferasas/genética , Archaea/clasificación , Bacterias/genética , Secuencia de Bases , Biología Computacional , Secuencia Conservada , Evolución Molecular , Genoma Arqueal , Hierro/metabolismo , Magnesio/metabolismo , Metilación , Datos de Secuencia Molecular , Nanoarchaeota/genética , Filogenia , Pyrococcus abyssi/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Azufre/metabolismo , Thermococcales/genética , Uracilo/metabolismo , Uridina/metabolismo , ARNt Metiltransferasas/metabolismo
10.
Methods Enzymol ; 425: 103-19, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673080

RESUMEN

Formation of 5-methyluridine (ribothymidine) at position 54 of the T-psi loop of tRNA is catalyzed by site-specific tRNA methyltransferases (tRNA[uracil-54,C5]-MTases). In eukaryotes and many bacteria, the methyl donor for this reaction is generally S-adenosyl-L-methionine (S-AdoMet). However, in other bacteria, like Enterococcus faecalis and Bacillus subtilis, it was shown that the source of carbon is N(5),N(10)-methylenetetrahydrofolate (CH(2)=THF). Recently we have determined that the Bacillus subtilis gid gene (later renamed to trmFO) encodes the folate-dependent tRNA(uracil-54,C5)-MTase. Here, we describe a procedure for overexpression and purification of this recombinant enzyme, as well as detection of its activity in vitro. Inspection of presently available sequenced genomes reveals that trmFO gene is present in most Firmicutes, in all alpha- and delta-Proteobacteria (except Rickettsiales in which the trmFO gene is missing), Deinococci, Cyanobacteria, Fusobacteria, Thermotogales, Acidobacteria, and in one Actinobacterium. Interestingly, trmFO is never found in genomes containing the gene trmA coding for S-adenosyl-L-methionine-dependent tRNA (uracil-54,C5)-MTase. The phylogenetic analysis of TrmFO sequences suggests an ancient origin of this enzyme in bacteria.


Asunto(s)
Evolución Molecular , Ácido Fólico/fisiología , Uracilo/metabolismo , ARNt Metiltransferasas/análisis , Bacillus subtilis/enzimología , ARNt Metiltransferasas/fisiología
11.
Nucleic Acids Res ; 33(13): 3955-64, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16027442

RESUMEN

Formation of 5-methyluridine (ribothymidine) at position 54 of the T-psi loop of tRNA is catalyzed by site-specific tRNA methyltransferases (tRNA:m(5)U-54 MTase). In all Eukarya and many Gram-negative Bacteria, the methyl donor for this reaction is S-adenosyl-l-methionine (S-AdoMet), while in several Gram-positive Bacteria, the source of carbon is N(5), N(10)-methylenetetrahydrofolate (CH(2)H(4)folate). We have identified the gene for Bacillus subtilis tRNA:m(5)U-54 MTase. The encoded recombinant protein contains tightly bound flavin and is active in Escherichia coli mutant lacking m(5)U-54 in tRNAs and in vitro using T7 tRNA transcript as substrate. This gene is currently annotated gid in Genome Data Banks and it is here renamed trmFO. TrmFO (Gid) orthologs have also been identified in many other bacterial genomes and comparison of their amino acid sequences reveals that they are phylogenetically distinct from either ThyA or ThyX class of thymidylate synthases, which catalyze folate-dependent formation of deoxyribothymine monophosphate, the universal DNA precursor.


Asunto(s)
Bacterias/enzimología , Evolución Molecular , Genes Bacterianos , Uridina/análogos & derivados , ARNt Metiltransferasas/clasificación , ARNt Metiltransferasas/genética , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Escherichia coli/metabolismo , Flavinas/metabolismo , Genómica , Filogenia , ARN de Transferencia/metabolismo , Uridina/metabolismo , ARNt Metiltransferasas/metabolismo
12.
J Biol Chem ; 279(35): 37142-52, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15210688

RESUMEN

In sequenced genomes, genes belonging to the cluster of orthologous group COG1041 are exclusively, and almost ubiquitously, found in Eukaryota and Archaea but never in Bacteria. The corresponding gene products exhibit a characteristic Rossmann fold, S-adenosylmethionine-dependent methyltransferase domain in the C terminus and a predicted RNA-binding THUMP (thiouridine synthases, RNA methyltransferases, and pseudouridine synthases) domain in the N terminus. Recombinant PAB1283 protein from the archaeon Pyrococcus abyssi GE5, a member of COG1041, was purified and shown to behave as a monomeric 39-kDa entity. This protein (EC 2.1.1.32), now renamed (Pab)Trm-G10, which is extremely thermostable, forms a 1:1 complex with tRNA and catalyzes the adenosylmethionine-dependent methylation of the exocyclic amino group (N(2)) of guanosine located at position 10. Depending on the experimental conditions used, as well as the tRNA substrate tested, the enzymatic reaction leads to the formation of either N(2)-monomethyl (m(2)G) or N(2)-dimethylguanosine (m(2)(2)G). Interestingly, (Pab)Trm-G10 exhibits different domain organization and different catalytic site architecture from another, earlier characterized, tRNA-dimethyltransferase from Pyrococcus furiosus ((Pfu)Trm-G26, also known as (Pfu)Trm1, a member of COG1867) that catalyzes an identical two-step dimethylation of guanosine but at position 26 in tRNAs and is also conserved among all sequenced Eukaryota and Archaea. The co-occurrence of these two guanosine dimethyltransferases in both Archaea and Eukaryota but not in Bacteria is a hallmark of distinct tRNAs maturation strategies between these domains of life.


Asunto(s)
Guanosina/química , Metiltransferasas/química , ARN de Transferencia/química , S-Adenosilmetionina/química , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Archaea , Rastreo Diferencial de Calorimetría , Catálisis , Dominio Catalítico , Cromatografía en Gel , Metilación de ADN , Bases de Datos como Asunto , Electroforesis en Gel de Poliacrilamida , Células Eucariotas/metabolismo , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN/química , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA